Insights from the Low Cost Monitoring Project (LCMP)

SW PA IPL Meeting

6:30 PM Wednesday, January 26, 2022

Reducing Outdoor

Contaminants in

I ndoor Spaces

Rors

01

"Rock-us" or "Raucous"

Rocis

"A Southwestern Pennsylvania initiative to reduce the impact of exterior pollution in indoor spaces" 3

www.ROCIS.org

Most of our exposure to outdoor pollution happens INSIDE buildings

www.iaqscience.lbl.gov

Focus on Particles Also referred to as Particulate Matter (PM)

U.S. Environmental Protection Agency (EPA):

Particulate matter (PM), also known as particle pollution, is a complex mixture of extremely small particles & liquid droplets that get into the air. Once inhaled, these particles can affect the heart & lungs & cause serious health effects.

Health Concerns - Particles

- > Particles differ in toxicity.
- There can be adverse synergy with other co-pollutants.
- Fine and ultra-fine particles can be vehicles to increase exposure of toxic contaminants such as SVOCs and metals.
- > Our premise: "Precautionary principle" avoid or minimize your exposure.

Pittsburgh's Air Quality is Poor

Rebecca Droke/Post-Gazette

9th

8

People Most at Risk in the U.S. from Year-Round Particle Pollution (Annual PM_{2.5})

Worst City East of the Rockies for Year-Round <u>and</u> Short-Term PM_{2.5}

1 st

People Most at Risk in the U.S. from Short-Term Particle Pollution (24-hour PM_{2.5})*

*Pittsburgh-New Castle-Weirton (PA-WV-OH)

American Lung Association State of the Air 2021 (lung.org)

Particles (PM)

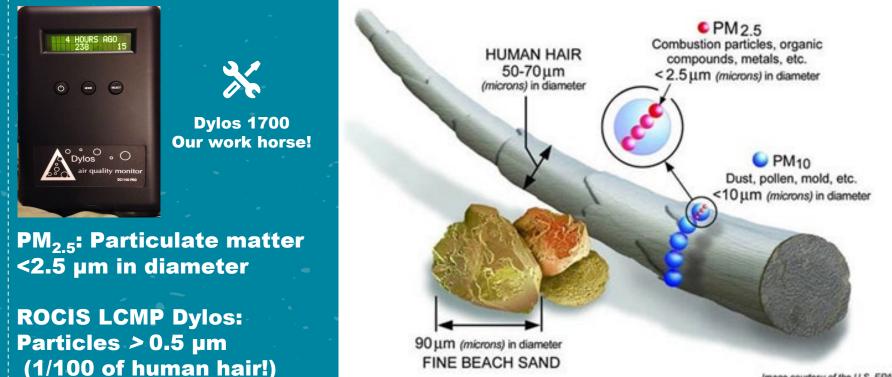


Image courtesy of the U.S. EPA

Outdoor Particles (PM) & Human Health

"Our best estimates of the US mortality burden associated with total PM_{2.5} exposure in 2012 range from ~230,000 to ~300,000 deaths."

Azimi, P., & Stephens, B. (2020). *Journal of exposure science* & *environmental epidemiology.*

Outdoor particulate matter and human health

The Low Cost Monitoring Project (LCMP)

LCMP Objectives

- 1. Learn how low-cost monitors empower occupants (the Cohort is *FREE*)
- 2. Examine the impacts of outdoor on indoor air
- 3. Explore Interventions to improve indoor air quality
- 4. Develop champions!

LCMP Cohorts

4 HOURS AGO

0 - -

O Dylos

TEST/ SILENCE

CO- EXPERTS

• Participants borrow monitoring equipment to measure:

- Particles (0.5+ & 2.5+ μm)
- Carbon dioxide (CO₂)
- Carbon monoxide (CO)
- Radon
- Temperature
- Relative humidity

۲

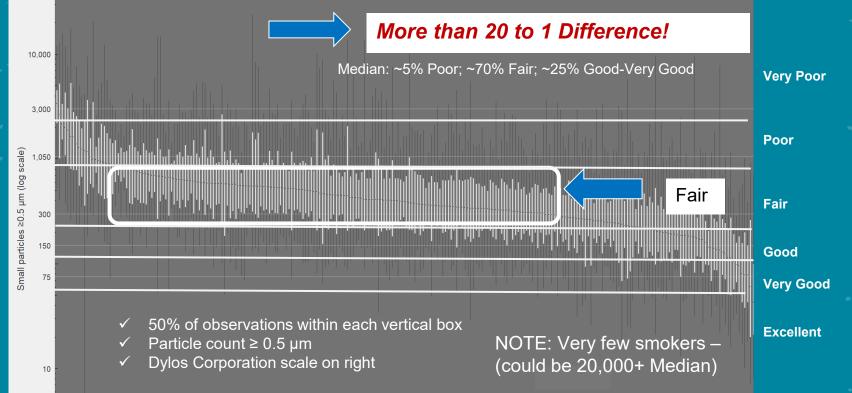
During the course of the 4week cohort, participants:

- Learn from the ROCIS team
- Benefit from each other's experiences
- Receive weekly individualized feedback in response to their data, observations, & questions

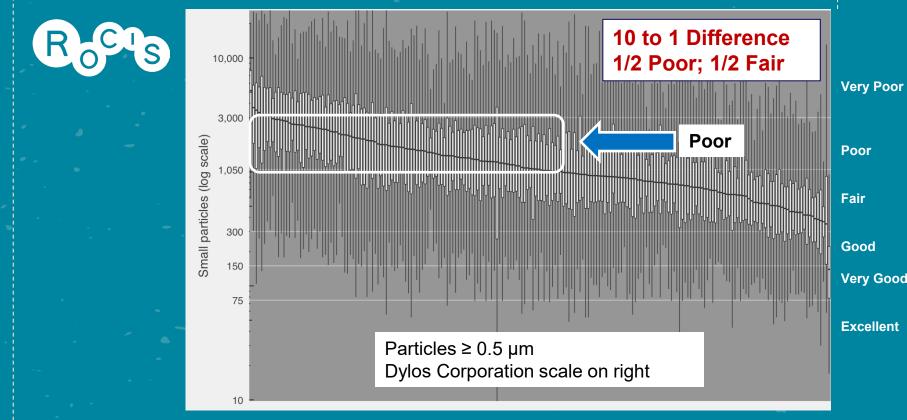
LCMP Design Not a Regulatory Focus

 Measuring particle count, not mass; 1-min. resolution

Focus on indoor / outdoor comparison


Proof of concept – exploration of interventions

Good Readings Good Indoor Air Quality


15

Know the limitations of our particle monitoring. What we cannot easily monitor could <u>be important!</u>

Indoor Particle Distribution B²⁵⁰ LCMP Residential Sites

Outdoor Particle Distribution All Sites

 \checkmark

Aha's from past participants

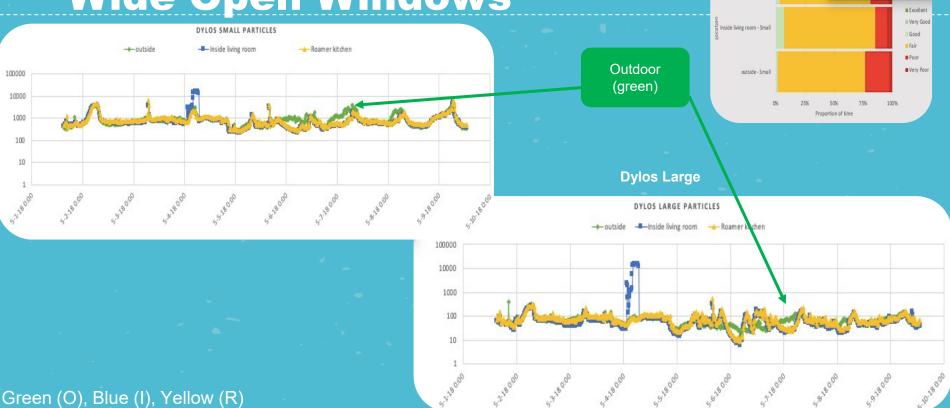
- Wow! Bad outdoor air quality all over the region. It is the same air shed)
- Outdoor air often worse at night & early AM
 - Things I do indoors can have big adverse impact
- \checkmark The way we cook makes a big difference
- ✓ I need to close windows more
- There are many ways I can improve my family's air quality
- ✓ There are many simple & relatively inexpensive solutions
- ✓ Filtration can have a big impact
- ✓ Don't trust radon readings from real estate transactions

Reducing Exposure to Indoor

Particles

4 Strategies to Reduce Indoor Particles

- A) Reduce air exchange from outside
 - Close windows
 - Tighten home or building
- B) Reduce indoor sources
 - Use an effective ducted kitchen hood!
 - Use induction cook top & other good practices w/ cooking


- C) Reduce resuspension
 - HEPA vacuum; thoroughly clean hard surfaces
 - Walk-off mats
 - Get rid of carpets, old upholstered furniture
- D) Filter the air
 - Portable air cleaners
 - DIY Fan Filters
 - Central air handler (furnace, AC, or ventilation)

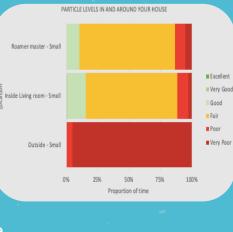
4 Strategies to Reduce Indoor Particles

- A) Reduce air exchange from outside
 - Close windows
 - Tighten home or building
- B) Reduce indoor sources
 - Use an effective ducted kitchen hood!
 - Use induction cook top & other good practices w/ cooking

- C) Reduce resuspension
 - HEPA vacuum; thoroughly clean hard surfaces
 - Walk-off mats
 - Get rid of carpets, old upholstered furniture
- D) Filter the air
 - Portable air cleaners
 - DIY Fan Filters
 - Central air handler (furnace, AC, or ventilation)

House with Wide Open Windows

Series "Fair" Point "Roamer kitchen


PARTICLE LEVELS IN AND AROUND YOUR HOUSE

Value: 593

Roamer kitchen - Small

1941 House in Winter with High Outside Particle Counts

4 Strategies to Reduce Indoor Particles

- A) Reduce air exchange from outside
 - Close windows
 - Tighten home or building
 - **B) Reduce indoor sources**
 - Use an effective ducted kitchen hood!
 - Use induction cook top & other good practices w/ cooking

- C) Reduce resuspension
 - HEPA vacuum; thoroughly clean hard surfaces
 - Walk-off mats
 - Get rid of carpets, old upholstered furniture
- D) Filter the air
 - Portable air cleaners
 - DIY Fan Filters
 - Central air handler (furnace, AC, or ventilation)

Reduce Cooking Emissions

Check out ROCIS guidance document & webpage http://rocis.org/kitchen-range-hoods • ROCIS ISSUE BRIEF, Ducted Range Hoods: Recommendations for New and Existing Homes

Webinar - Keep a Lid On It:
 Practices to Reduce Cooking
 Pollution in Homes

More Cooking Considerations!

Particle generation during cooking:

- Range hood?
- Cooking style (fry vs. steam or bake)
- Use of lids
- Heat: Lower is better
- Impact of different oils & butter
- Add salt & pepper first to oil

COOKING OIL SMOKE POINT CHART

KNOWYOURPRODUCE.COM

450°F+

CLARIFIED BUTTER (GHEE) 485 SOY BEAN OIL 450 PEANUT OIL 450

Ανος Αροιοίι 520

400°F

SUNFLOWER OIL 440 CORN OIL 440 OLIVE OIL 410 VEGETABLE OIL 400 CANOLA OIL 400 GRAPESEED OIL 392

350°F

LARD 370 'EGETABLE SHORTENING 360 EXTRA VIRGIN OLIVE OIL 350 COCONUT OIL 350 BUTTER 350 SESAME OIL (REFINED) 350

DON'T COOK WITH

TOASTED OILS AND SOME SEED OILS These oils have a very low smoke point, it's best to add these oils once you remove the food from the heat.

Other Indoor-Generated Sources

Here's what we have seen:

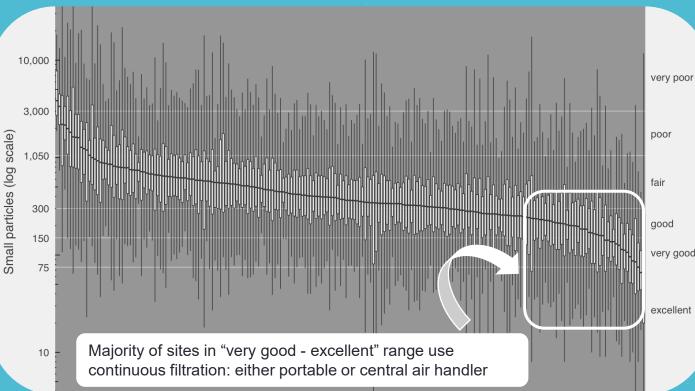
- Humidifier using tap water (not distilled water)
- Showers high humidity
- Cleaning products
- Personal hygiene
- Recreational combustion
 - Cigarettes, vaping...
 - Candles, incense, diffusers

4 Strategies to Reduce Indoor Particles

- A) Reduce air exchange from outside
 - Close windows
 - Tighten home or building
- B) Reduce indoor sources
 - Use an effective ducted kitchen hood!
 - Use induction cook top & other good practices w/ cooking

- C) Reduce resuspension
 - HEPA vacuum; thoroughly clean hard surfaces
 - Walk-off mats
 - Get rid of carpets, old upholstered furniture
- D) Filter the air
 - Portable air cleaners
 - DIY Fan Filters
 - Central air handler (furnace, AC, or ventilation)

4 Strategies to Reduce Indoor Particles


- A) Reduce air exchange from outside
 - Close windows
 - Tighten home or building
- B) Reduce indoor sources
 - Use an effective ducted kitchen hood!
 - Use induction cook top & other good practices w/ cooking

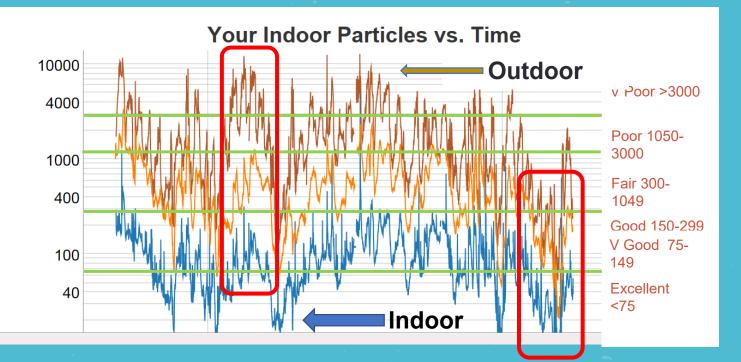
- C) Reduce resuspension
 - HEPA vacuum; thoroughly clean hard surfaces
 - Walk-off mats
 - Get rid of carpets, old upholstered

furniture

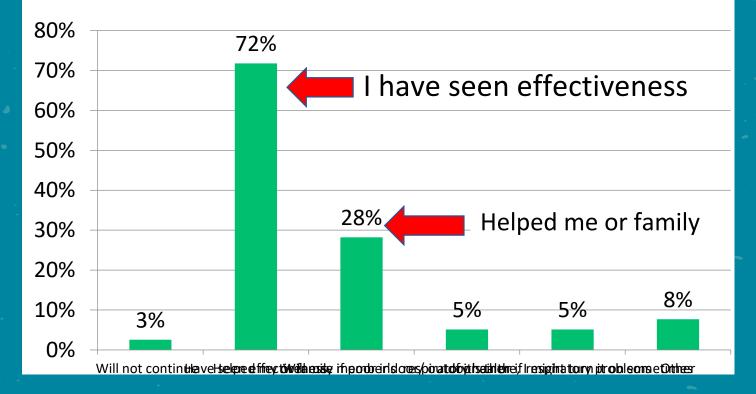
- D) Filter the air
 - Portable air cleaners
 - DIY Fan Filters
 - Central air handler (furnace, AC, or ventilation)

Indoor Particle Distribution: All Sites

More than 20 to 1 difference! Median: ~5% Poor, 70% Fair ~25% Good / Very Good

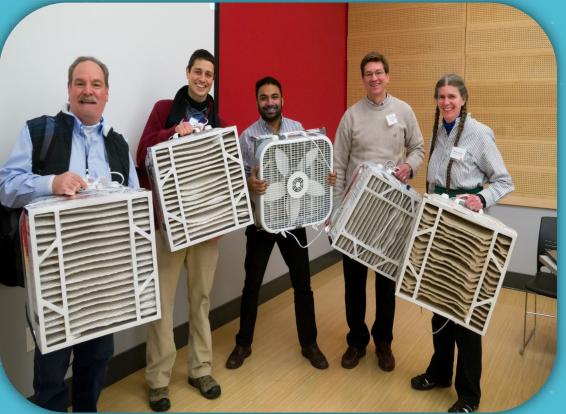

50% of observations are within each vertical box Particles 0.5+ µm (Dylos small) Dylos Corporation scale (on right) January 2022

Impact of Portable Air Cleaner

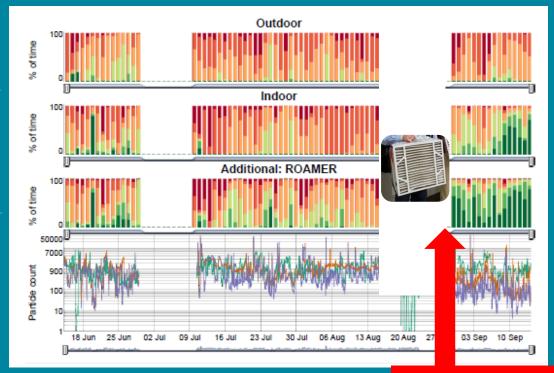

http://rocis.org/rocis-data-explorer (j1t8) 0.5+ μm Particles by Time (15-min. avg.)

Brown: outdoors Orange: untreated zone Blue: treated zone with 24/7 air cleaner

Tight, single-family home Though order of magnitude lower, Indoor (Blue/orange) tracks Outdoor (brown)



Why Continue to Use an Air Cleaner or Fan/Filter?


Fan/Filter Intervention: Low Cost, MERV 13

4" MERV 13 filter (\$35) on 20" x 20" box fan (~\$20) Box fan in room or in window UL-rated fan with overheat protection

Indoor Fan/Filter 24/7 Impact

http://rocis.org/rocis-data-explorer (k4x3)

Added fan/filter here

Fan/Filter Options 20" Box Fan w High MERV Filters

Some use multiple filters (2 in V, or 4 in box)

https://m.box.com/shared_item/https%3A%2F%2Fucdavis.box.com%2Fs%2Fkgo937lk0d02g0k2bxvpxxqbfatd7czu

Or use "Corsi-Rosenthal Cube" in search

ROCIS 24/7 Air Handler Checklist

Air Handler Operation

- Thermostat usually set to "Auto", not "On"
- Average annual run-time is ~15%
- Inadequate for filtration
- Call for heat & cool does not align with need for filtration
- With smart thermostats more control of "on time"

Big Issues with 24/7 High MERV Filter

Air handler (AHU) energy use can be high due to 500 to 1,500 watt-draw

 High cost of running air handler continuously (360 kWh to 1080 kWh/month = ~\$500 to \$1500/year¹)

Wrong blower speed

- Seldom set in field
- Often defaults to high speed, not low, in continuous mode
- Higher energy cost, less effective filtration

Ductwork issues introduce additional problems

- Static pressure too high (can lead to equipment failure)
- Duct leaks (energy waste & pressure-related problems)

¹ \$0.12/kWh

Janurary 2022

Pre

1st Air Handler Retrofit

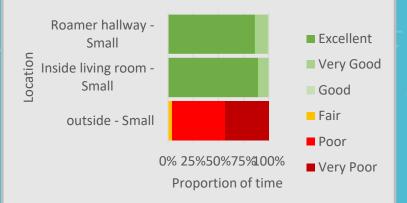
20x25x4 MERV 13

16x25x1 MERV 12

CASE STUDY: Indoo Chris Guignon, evolveEA

Post

Replaced

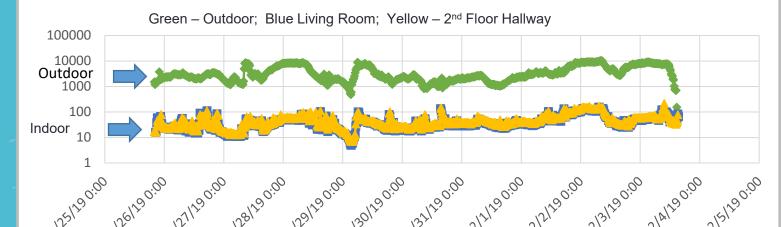

motor w/

PSC

ECM

Labor & material cost: ~\$1,000 24/7 monthly operating cost: ~\$12.50

PARTICLE LEVELS IN AND AROUND YOUR HOUSE



LCMP Top Performer Air Handler 24/7 – MERV 13 Filter

Indoor tracks outdoor Indoor uniform – 2 locations Also – 2^{nd} floor portable air cleaner

Continuous Mode: **\$12/month Post: 110 watts; 500 CFM** (Pre-Post: 400 watt reduction)

Dylos small (0.5+ microns) (#/1/100 ft³)

Filter Essentials

- Deep filter (we prefer 4")
- Large filter (surface area)
- Low resistance filter (check label on filter)
- Minimize filter bypasses

 MERV 13 to reduce 0.3 to 0.5 µm particles (MERV is like R-Value; performance depends on installation/operation)

Adequate run/on time (if system passes diagnostic screening)

Take Aways: Air Handlers 24/7 w High MERV Filtration

- Can be very effective!
- Do not operate air handler 24/7 without confirming
 - Fan cost (electricity)
 - Minimal duct leakage to outside (big issue w/attic ducts)
 - Static pressure within operating range

NOTE: One-inch pleated filters can be very restrictive

Four Conclusions

- 1. Low cost monitors Reinforce behavior & investment
- 2. Lower outdoor particle pollution Lower indoor levels
- No magic bullet Occupants & building systems significant impact on particle levels
- 4. Better outdoor air quality & housing stock/building systems
 critical to reduce disparities & to improve health

Implications for Climate Change

Integrated on-site solutions are needed to enhance health, resilience, energy efficiency (kWh & kW), comfort, & durability

Easier to make the case for on-site investment with multiple benefits, including job & local economic impact

Reduction of fossil fuel use can improve outdoor (& indoor) air quality

Better air quality lowers energy operating cost of interventions (30% vs. 100% runtime)

On-site solutions also provide capacity to respond to worsening climate incidences (heat events, thermal inversions, wildfire smoke)

January 26, 2022

Thanks!

Thanks to Phil Johnson & The Heinz Endowments for support of the ROCIS initiative (Reducing Outdoor Contaminants in Indoor Spaces) and our 400+ LCMP participants January 26, 2022

QUESTIONS??

Linda Wigington Team Leader Waynesburg, PA 724-852-3085; 724-986-0793 (C) Iwigington1@outlook.com

Upcoming Cohort (sign up for intro session) Mon. 7 PM Feb.14, or Tue. 10:30 AM Feb. 15

Monitoring Feb. 24 - March 25, 2022 http://ROCIS.org Emily Dale LCMP Coordinator Claysville, PA 724-833-8223 ke_dale@hotmail.com

(7) (0) (in)

created by Slidesgo , including icons by Flaticon , and infographics & images by Freepik .

Outdoor + Indoor

Reducing Cooking Emissions:

Check out ROCIS guidance document & webpage (<u>http://rocis.org/kitchen-range-hoods</u>)

- ROCIS ISSUE BRIEF, <u>Ducted Range Hoods</u>: <u>Recommendations for New and Existing Homes</u>
- > And recent ROCIS webinar
 - Keep a Lid on It: Best Practices for Reducing Cooking Pollution in Homes

LCMP Cohorts

Green Eve

4 HOURS AGO

0 - -

102

ROCIS R043

Participants borrow monitoring equipment to measure:

10

- Particles (0.5+ μm and 2.5+ μm)
- Carbon dioxide (CO2)
- Carbon monoxide (CO)
- Radon
- Temperature
- Relative humidity

During the course of the 4-week cohort, participants:

- Learn from the ROCIS team
- Benefit from each other's
 experiences
- Receive weekly individualized feedback in response to their monitoring data, observations, and questions.