

PARTICLE FILTRATION WITH CENTRAL AIR HANDLERS: FOLLY OR OPPORTUNITY?

TRACK: HVAC STRATEGIES, Breakout 3, Tuesday, April 12, 2022, 11:30 - 12:30

PRESENTERS

Rhett Major, Principal *The Energy Doctor* 1739 Guffey Road, North Huntingdon, PA <u>theenergydoctor@comcast.net</u>

Linda Wigington, Team Leader ROCIS, Reducing Outdoor Contaminants in Indoor Spaces Waynesburg, PA Iwigington1@outlook.com

www.ROCIS.org

LEARNING OBJECTIVES

At the completion of this session, attendees will :

1) Recognize the potential health benefits of substantially reducing exposure to particles (.1 to 5 microns), & the role of filtration in addressing particles generated inside & outside of a home

2) Be able to describe the interactions that can result from the use of higher MERV filters,& longer air handler run-times, as well as specific strategies to minimize adverse impacts

3) Be able to list 5 things to consider to determine the appropriateness of using a higher MERV filter, & operating an air handler system 50% or more of the time

FILTERING AIR WITH HOME HEATING & AIR CONDITIONING SYSTEMS

Significant missed opportunity to reduce particles

However: *Major liabilities* (energy use, emissions, energy cost, equipment life, & performance)

Our solutions reduce fine particles by 50-80% while minimizing risk

TIME FOR A ROS VIDEO

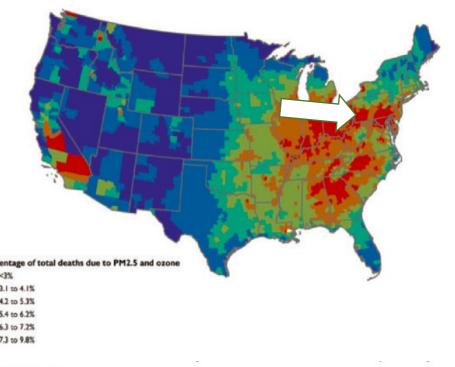
April 12, 2022

Most of our exposure to outdoor pollution happens INSIDE buildings

https://iaqscience.lbl.gov/health-effectsoutdoor-air-particles

pril 12-15, 2020 | Austin, TX

Outdoor Particles (PM) & Human Health


"Our best estimates of the US mortality burden associated with total PM_{2.5} exposure in 2012

from ~230,000 to ~300,000 deaths."

Azimi, P., & Stephens, B. (2020). Journal of Exposure Science & Environmental Epidemiology.

Outdoor particulate matter and human health

Fann et al. 2012 Risk Analysis

Deadly air pollutant 'disproportionately and systematically' harms Americans of The study found that Black people are exposed to 21 percent more color, study finds

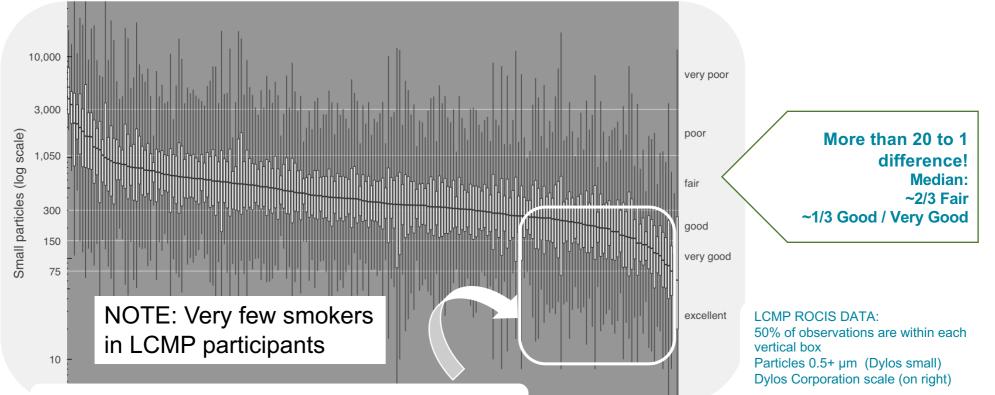
fine-particle pollution compared to average Americans, while exposure was 18 percent greater for Asian Americans and 11 Black, Latino and Asian Americans face higher levels of exposure to fine particulate matter from traffic, construction and other sources

By Juliet Eilperin and Darryl Fears

Add to list

April 28, 2021 at 2:00 p.m. EDT

Interstate 15 carries heavy traffic between Southern California and Las Vegas, (David McNew/Getty Images)


lup 12 2020

Environmental injustice in Pittsburgh: Poor, minority neighborhoods see higher rates of deaths from air pollution

"Systemic racism is not limited to one system."

Kristina Marusic

INDOOR PARTICLE DISTRIBUTION: ALL SITES

Majority of sites in "very good - excellent" range use *continuous filtration:* either portable or central air handler

Filtration only works when it is ON!

YOU ONLY

GET OUT

WHAT YOU

PUT IN

AIR HANDLER OPERATION

- Thermostat usually set to "Auto", not "On"
- Average annual run-time is ~15%
- Inadequate for filtration
- Call for heat & cool does not align with need for filtration
- With smart thermostats more control of "on time"

High MERV Filter - Air Handler (Filter/AHU) Inquiry

Initial Question...

Is there an easy way to determine if I can use a high MERV filter with a longer air handler run-time without causing problems (\$, equipment durability, performance, or GHG emissions)?

NO !! Diagnostic Screen is Required

Filter/AHU Inquiry: Approach

Developed diagnostic protocol Over 60+ air handler systems tested to date Evaluate opportunity for MERV 13 plus 24/7 operation

Next up: Rhett Major, The Energy Doctor Description of the diagnostic visit & interventi

SPECIAL THANKS TO:

Scott Pigg - Slipstream Mark Jerome - CLEAResult Bill Graber - TEC Steve Rogers - TEC Building Science Corporation

We want cleaner air, but can our systems take the extra restrictions presented by the filter?

We want cleaner air, but can our systems take the extra restrictions presented by the filter?

1" high MERV filters tend to be very restrictive.

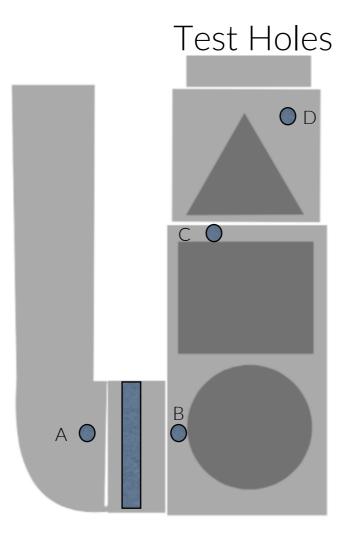
TOTAL EXTERNAL STATIC PRESSURE

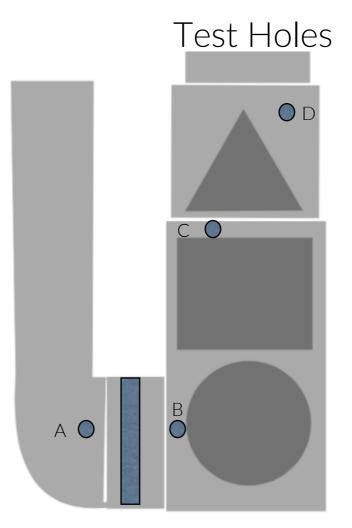
TESP - AKA - External Static Pressure

TOTAL EXTERNAL STATIC PRESSURE

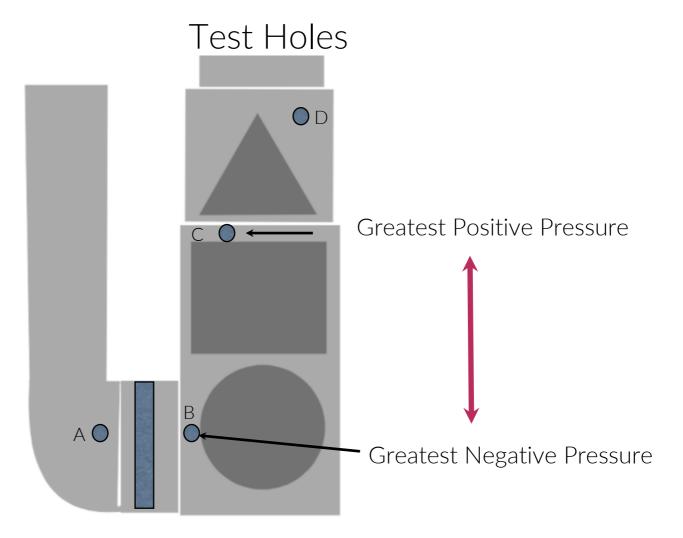
TESP - AKA - External Static Pressure

Combined highest Positive and Negative pressure External to the air handler - created by the total resistance in the entire furnace/ AC/ duct system.


TOTAL EXTERNAL STATIC PRESSURE


TESP - AKA - External Static Pressure

Combined highest Positive and Negative pressure External to the air handler - created by the total resistance in the entire furnace/ AC/ duct system.


The greater the TESP, the more restricted the airflow.

Drill test holes very carefully!

Drill test holes very carefully!

MEASURING EXTERNAL STATIC PRESSURE & OEM FAN TABLE

Equipment Needed

- Standard Manometer/Magnehelic or Digital
- 1 or 2 Static Pressure Probes
- Tubing
- Other equipment

 Orill with ¼ inch bit
 Step Drill bit

Measure Static Pressure with manometer

• Drill ¼ inch ports, insert static tip

Return Plenum

After Filter

Supply Plenum

		dessous DIO FAR HAC				
	OUTPUT See Note B SORTIE Voir La Note CI-	elow BTU/HR dessous BTU PAR HRE	78,000	-	31,000	
	AIR TEMPERATURE RISE AUGMENTATION DE LA	DEG. F	40-70	50-80	35-85	
	TEMPERATEUR DE L'AIR	DEG. C	22-39	28-44	19-36	
	DESIGN MAX. OUTLET AIR TEMPERATURE CONCU POUR UNE TEMPE	RATURE DEG. F	185	195	195	
	MAX. D'AIR DE SORTIE DE	DEG. C	85	91	91	
	(FOR PURPOSE OF INPU	T ADJUSTMENT)	(POUR L'A	DJUSTMENT	D'ENTREE)	
	ALTITUDE	MANIF	OLD PRESSUR			
1	0 - 4,500 FT.	IN. W.C. / P	O C.E. 3.2-	-3.8 1.3 -	1.8 0.50-0.65	
	0 – 1372 m	KPa	0.80-0	95 0.32-0.4	2 0.125-0.162	
	4.500 - 10,000 FT. 1372 - 3050 m		ER TO INSTALL ER LES INSTRU IN.W.C. /	ICTION D'INST		
	MAX. HEATING EXT. STATIC PRESS. STATIQUE EXT. MAX.		AGE	0.5	0.125	
	MAX. INLET GAS PRESSURE			13.6	3.39	
	MIN. INLET GAS PRESSURE PRESS, MIN D'ADMISSION D	DE GAZ		4.5	1.12	
	For installation in alcove or closet at Min, clearance	TOP	SIDES BACK COTES ARRIE	ERE AVANT	VENT FRONT SERVICE EVENT SERVICE DEVANT 0 24 0 610	

		dessous bio FAR INC				
	OUTPUT See Note B SORTIE Voir La Note Ci-	elow BTU/HR dessous BTU PAR HRE	78,000	-	31,000	
	AIR TEMPERATURE RISE AUGMENTATION DE LA	DEG. F	40-70	50-80	35-85	
	TEMPERATEUR DE L'AIR	DEG. C	22-39	28-44	19-36	
	DESIGN MAX. OUTLET AIR TEMPERATURE CONCU POUR UNE TEMPE	DEG. F	185	195	195	
	MAX. D'AIR DE SORTIE DE	DEG. C	85	91	91	
	(FOR PURPOSE OF INPU	T ADJUSTMENT)	(POUR L'A	DJUSTMENT	D'ENTREE)	
	ALTITUDE	MANIF	OLD PRESSUR			
1	0 - 4,500 FT.	IN. W.C. / P	0 C.E. 3.2-	-3.8 1.3 -	1.8 0.50-0.65	
	0 – 1372 m	KPa	0.80-0	95 0.32-0.4	12 0.125-0.162	
	4,500 - 10,000 FT. 1372 - 3050 m		ER TO INSTALL ER LES INSTRU IN.W.C.	ICTION D'INST		
	MAX. HEATING EXT. STATIC PRESS. STATIQUE EXT. MAX		AGE	0.5	0.125	
	MAX. INLET GAS PRESSURE PRESS. MAX D'ADMISSION I	DE GAZ		13.6	3.39	
	MIN. INLET GAS PRESSURE PRESS, MIN D'ADMISSION D	E GAZ		4.5	1.12	
	For installation in alcove or closet at Min, clearance	TOP	SIDES BACK COTES ARRIE	ERE AVANT	VENT PRIMI SERVICE EVENT SERVICE DEXAMI 0 24 0 610	

011	the second se	DIO FAR HAG				
SOF	PUT See Note Below TIE Voir La Note Ci-dessous	BTU/HR BTU PAR HRE	78,000	-	31,000	
AIRI	EMPERATURE RISE MENTATION DE LA	DEG. F	40-70	50-80	35 - 85	
TEMP	PERATEUR DE L'AIR	DEG. C	22-39	28-44	19-36	
AIR T	GN MAX. OUTLET Emperature Su pour une temperaturi	DEG, F	185	195	195	
MAX.	D'AIR DE SORTIE DE	DEG. C	85	91	91	
the second se	R PURPOSE OF INPUT ADJU	JSTMENT)	(POUR L'A	JUSTMENT	D'ENTREE)	
	ITUDE	MANIFO	LD PRESSURI			
0 -	4,500 FT.	IN. W.C. / PO	C.E. 3.2-	3.8 1.3-	1.8 0.50-0.65	
0 -	1372 m	KPa	0.80-08.0	15 0.32-0.4	2 0.125-0.162	
4,50	0 – 10,000 FT. 2 – 3050 m		R TO INSTALLA R LES INSTRU IN.W.C. H	CTION D'INST.		
	HEATING EXT. STATIC PRESS. S. STATIQUE EXT. MAX. EN MO	DE DE CHAUFFA	GE	0.5	0.125	
	INLET GAS PRESSURE			13.6	3.39	
	INLET GAS PRESSURE S. MIN D'ADMISSION DE GAZ		and antiput	4.5	1.12	
For in	stallation in alcove set at Min, clearance INCHES	A CONTRACT OF A	DES BACK	RE AVANT	VENT FRONT SERVICE EVENT SERVICE DEVANT	
from	combustible material (POUCES) own here mm	And a state of the	0 0	25	0 24	

Every furnace or air handler has the maximum static pressure on the manufacturers label. I transfer this number to my static pressure test sheets.

1-888-728-9288

info@deawp.org

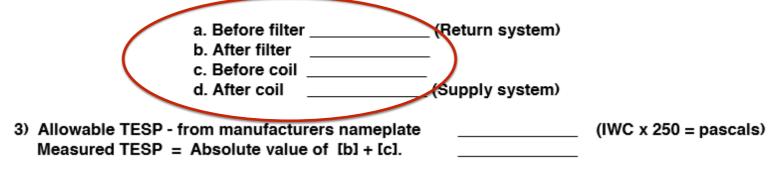
Heating Performance worksheet

Air Handler/ furnace	
Rated Input BTU	Output BTU
Temperature Rise range	-

- Drill test holes 3/8" (carefully located to avoid drilling into components) Check filter for cleanliness - replace if dirty
- Start up furnace system set to 85° Measure spillage stop time ______ seconds Allow system to run for 5 - 10 minutes - remember to open interior doors after spillage test. As the system warms up, take static pressure measurements - IWC or Pascals

a. Before filter b. After filter c. Before coil	_ (Return system) _
d. After coil	(Supply system)
3) Allowable TESP - from manufacturers nameplate Measured TESP = Absolute value of [b] + [c].	(IWC x 250 = pascals)
High TESP pressures indicate many possible	e problems - isolate where the restrictions are:

Ideal Return pressure - 20% of TESP _____ Measured return pressure is = a. _____


1-888-728-9288

info@deawp.org

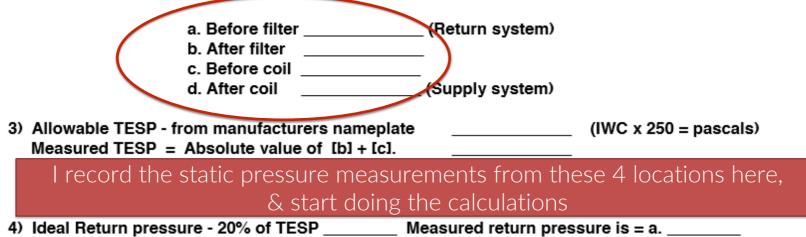
Heating Performance worksheet

Air Handler/ furnace	
Rated Input BTU	Output BTU
Temperature Rise range	-

- Drill test holes 3/8" (carefully located to avoid drilling into components) Check filter for cleanliness - replace if dirty
- Start up furnace system set to 85° Measure spillage stop time ______ seconds Allow system to run for 5 - 10 minutes - remember to open interior doors after spillage test. As the system warms up, take static pressure measurements - IWC or Pascals

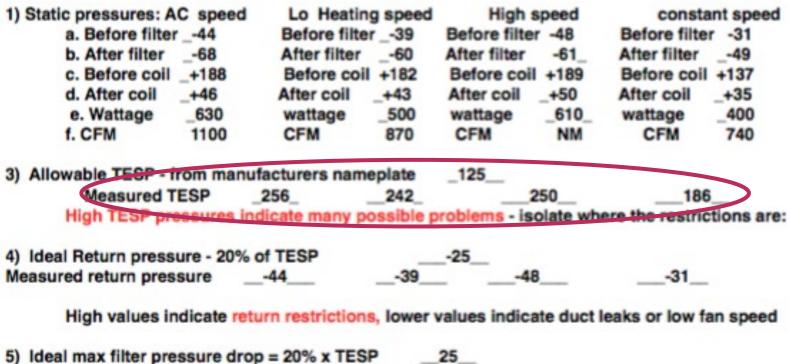
High TESP pressures indicate many possible problems - isolate where the restrictions are:

Ideal Return pressure - 20% of TESP _____ Measured return pressure is = a. _____

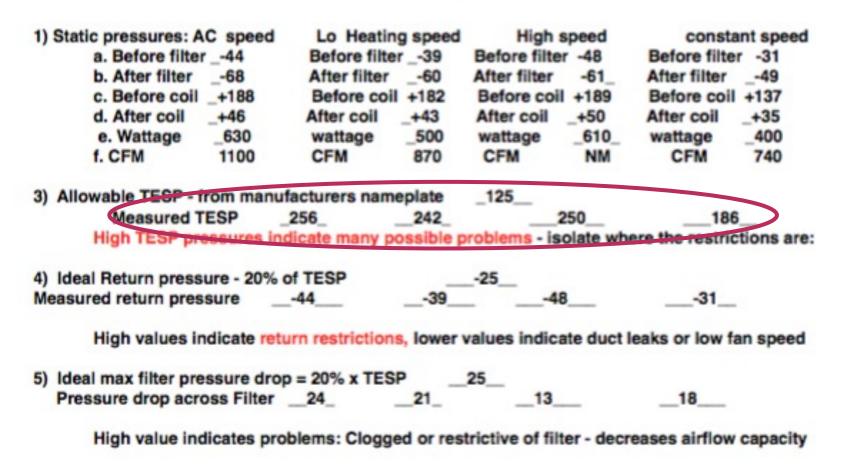

1-888-728-9288

info@deawp.org

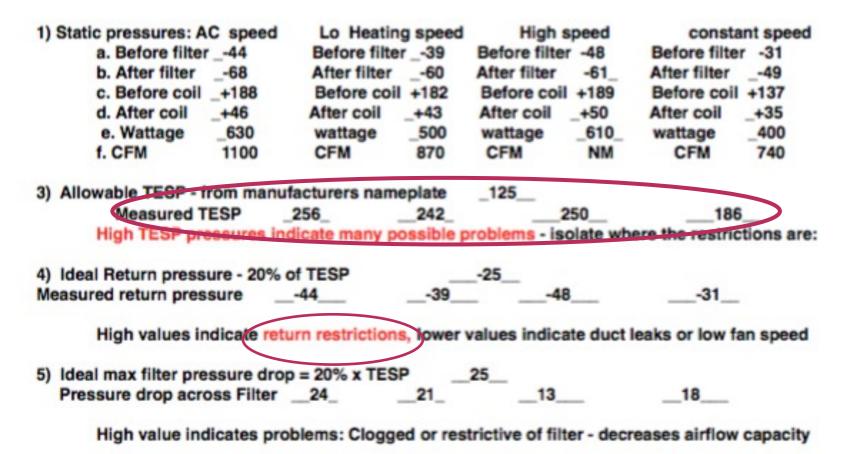
Heating Performance worksheet


Air Handler/ furnace	
Rated Input BTU	Output BTU
Temperature Rise range	e

- Drill test holes 3/8" (carefully located to avoid drilling into components) Check filter for cleanliness - replace if dirty
- Start up furnace system set to 85° Measure spillage stop time ______ seconds Allow system to run for 5 - 10 minutes - remember to open interior doors after spillage test. As the system warms up, take static pressure measurements - IWC or Pascals


1) Static pressures: AC speed	Lo Heating	g speed	High s	peed	consta	nt speed
a. Before filter44	Before filter	-39	Before filter	-48	Before filter	-31
b. After filter -68	After filter	-60	After filter	-61	After filter	-49
c. Before coil +188	Before coil	+182	Before coil		Before coil	+137
d. After coil _+46	After coil	+43	After coil	+50	After coil	+35
e. Wattage 630			wattage			400
f. CFM 1100	CFM	870	CFM	NM	CFM	740
3) Allowable TESP - from manuf	acturers name	eplate	_125			
Measured TESP	256_	242	2	50	186	
High TESP pressures inc	dicate many po	ossible p	problems - iso	plate who	ere the restric	tions are:
4) Ideal Return pressure - 20% of	of TESP		-25			
Measured return pressure		-39	-48		31	
High values indicate retu	irn restrictions	, lower	values indica	te duct l	eaks or low fa	an speed
5) Ideal max filter pressure drop	= 20% x TES		25			

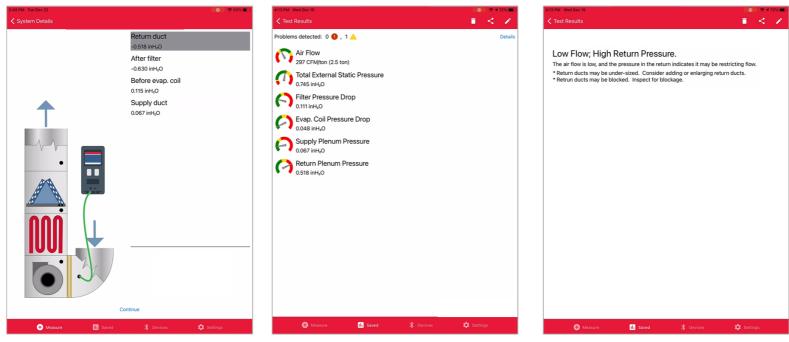
High value indicates problems: Clogged or restrictive of filter - decreases airflow capacity



Pressure drop across Filter __24___21___13____18___

High value indicates problems: Clogged or restrictive of filter - decreases airflow capacity

High Static pressure values indicate problems



High Static pressure values indicate problems

TRUEFLOW PRESSURE AND FLOW ANALYSIS

Results – Issue Detected

Measure Pressures & Flow

Details, Possible Actions

Why Should I Care About Static Pressure?

• High static pressure may cause:

Why Should I Care About Static Pressure?

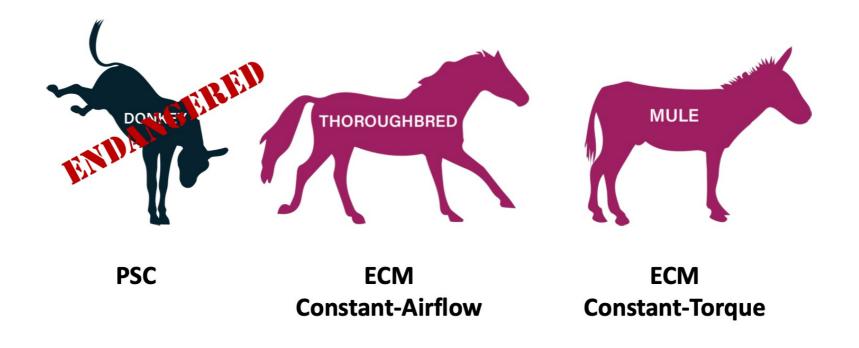
• High static pressure may cause:

• High amp draw on ECM and variable speed motors

Why Should I Care About Static Pressure?

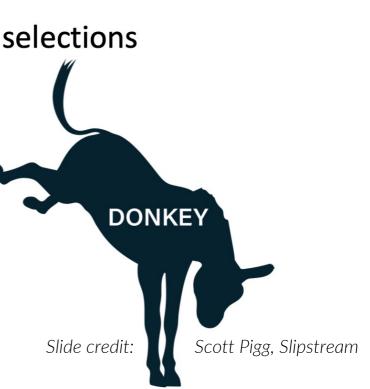
• High static pressure may cause:

- High amp draw on ECM and variable speed motors
- High energy usage


Why Should I Care About Static Pressure?

• High static pressure may cause:

- High amp draw on ECM and variable speed motors
- High energy usage
- Blower motor and/or compressor failure


Three types of blowers

Slide credit: Scott Pigg, Slipstream

Permanent-split Capacitor (PSC)

- Widely used for furnace blowers
- AC induction motor
- Runs at constant speed; 3-4 selections
- Limited airflow range
- Not very efficient (60-65%)
- Low cost
- Commodity replacement

Electronically-commutated Motor (ECM), Constant Airflow Aka "brushless permanent magnet (BPM)"

- Introduced in late 1980s for high-end, "variable-speed" furnaces
- DC motor
- Maintains constant airflow
- Wide airflow range
- More efficient
- Has start/stop ramping
- High cost
- Mfr specific

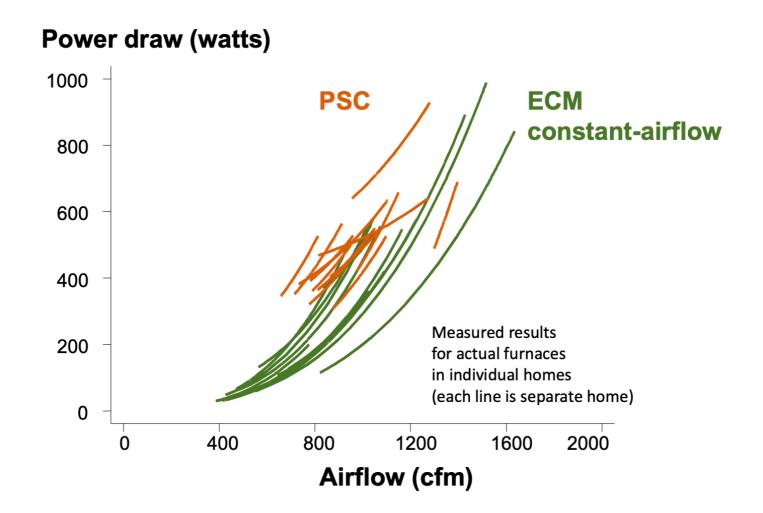
• Low static, high quality ducted applications will run slowly, quietly and efficiently..... while delivering the correct airflow.

• Low static, high quality ducted applications will run slowly, quietly and efficiently..... while delivering the correct airflow.

• High static applications will run fast, be noisy and power hungry.... The ECM may still provide the correct airflow, but at a price!

• Low static, high quality ducted applications will run slowly, quietly and efficiently..... while delivering the correct airflow.

• High static applications will run fast, be noisy and power hungry.... The ECM may still provide the correct airflow, but at a price!

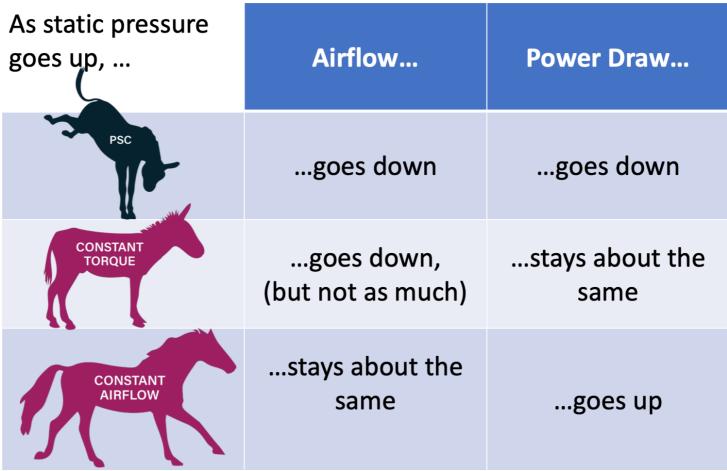

Use good duct design practices and hold static pressure to less than .8", ideally less than .5"

• Low static, high quality ducted applications will run slowly, quietly and efficiently..... while delivering the correct airflow.

• **High static** applications will run fast, be noisy and power hungry.... The ECM may still provide the correct airflow, but at a price!

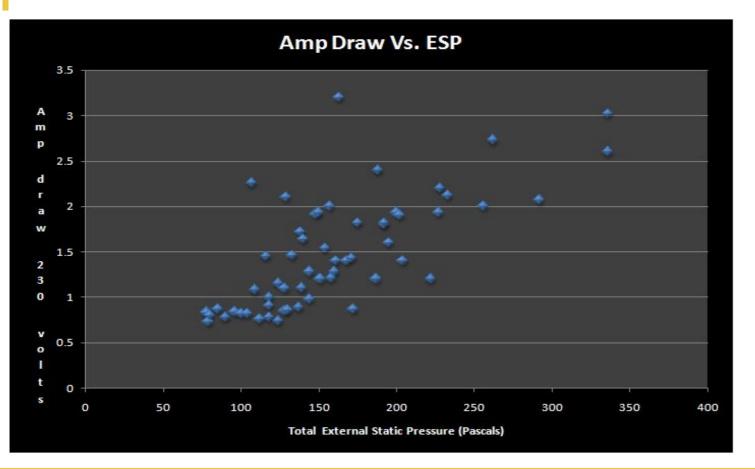
Use good duct design practices and hold static pressure to less than .8", ideally less than .5"

This is a measurement - not a setting!


Electronically-commutated Motor (ECM) Constant Torque

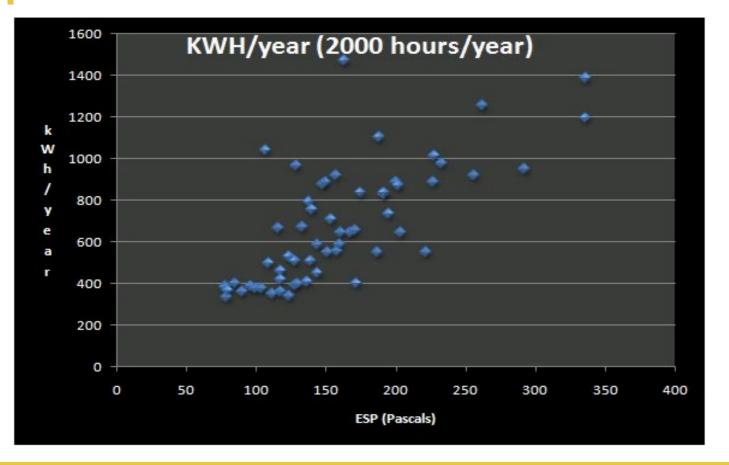
Original trade name "X13"

- Introduced around 2006
- ECM efficiency
- Maintains constant <u>torque</u> (not airflow)
- Limited to discrete "speeds" like PSC
- Has start/stop ramping
- Middle cost
- Can be retrofit



Response to flow resistance (static pressure)

Slide credit: Scott Pigg, Slipstream


AMP DRAW VS. EXTERNAL STATIC PRESSURE - ECM / VARIABLE SPEED

Slide credit: Mark Jerome - CLEAResult

KWH/YEAR VS. EXTERNAL STATIC PRESSURE - ECM / VARIABLE SPEED

Slide credit: Mark Jerome - CLEAResult

MEASURING WATT DRAW

• Clamp-on style Current Transformer (CT) (OWL, Energy Detective, Sense)

MEASURING WATT DRAW

- Clamp-on style Current Transformer (CT) (OWL, Energy Detective, Sense)
- Converts magnetic field to Wattage

MEASURING WATT DRAW

- Clamp-on style Current Transformer (CT) (OWL, Energy Detective, Sense)
- Converts magnetic field to Wattage
- Wireless monitor display

The wireless monitor shows the instantaneous wattage draw for the fan.

The wireless monitor shows the instantaneous wattage draw for the fan.

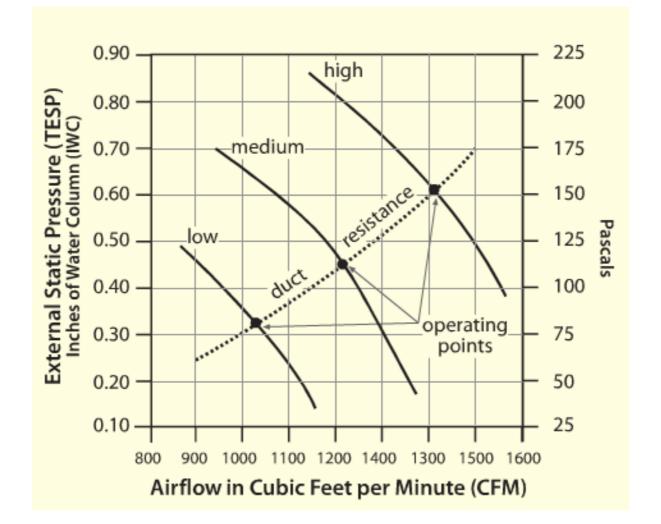
(This wattage is high, as it's capturing electric backup heat also.)

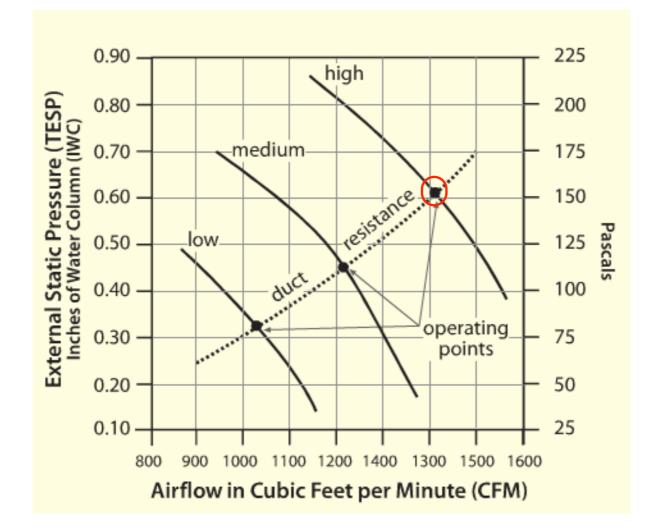
• What can increase TESP?

- What can increase TESP?
- Wrong fan speed

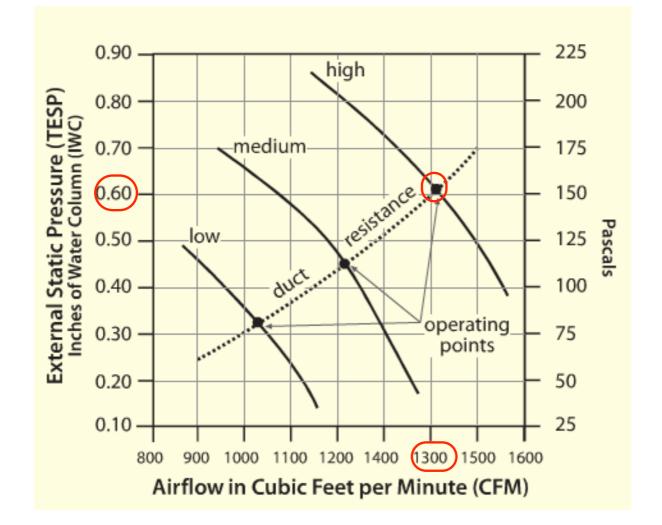
- What can increase TESP?
- Wrong fan speed
- Dirt primarily in the filter &/or coil

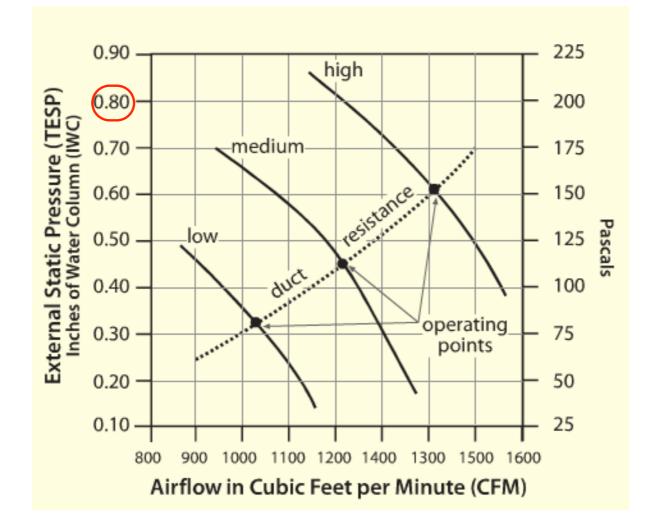
- What can increase TESP?
- Wrong fan speed
- Dirt primarily in the filter &/or coil
- Restrictions in the ductwork system or filter

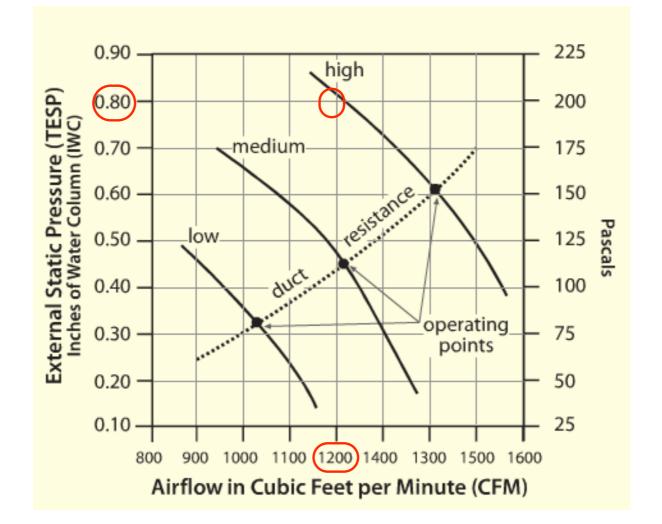

- What can increase TESP?
- Wrong fan speed
- Dirt primarily in the filter &/or coil
- Restrictions in the ductwork system or filter
- The greater the TESP, the less the airflow with PSC motors, or the higher the wattage draw (with ECM)

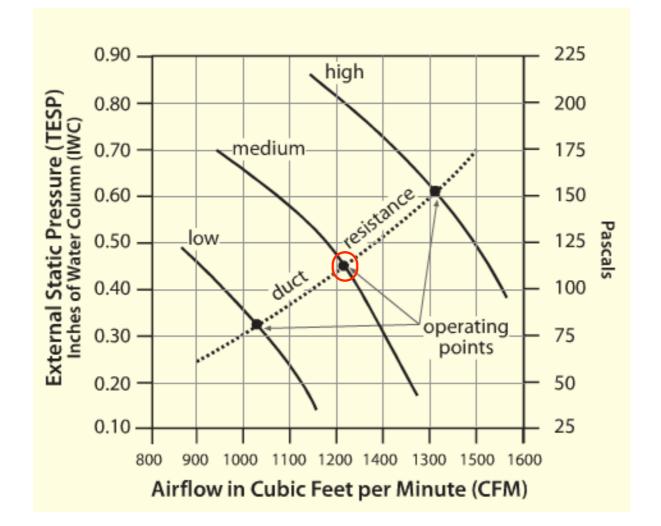

Permanent-split Capacitor (PSC)

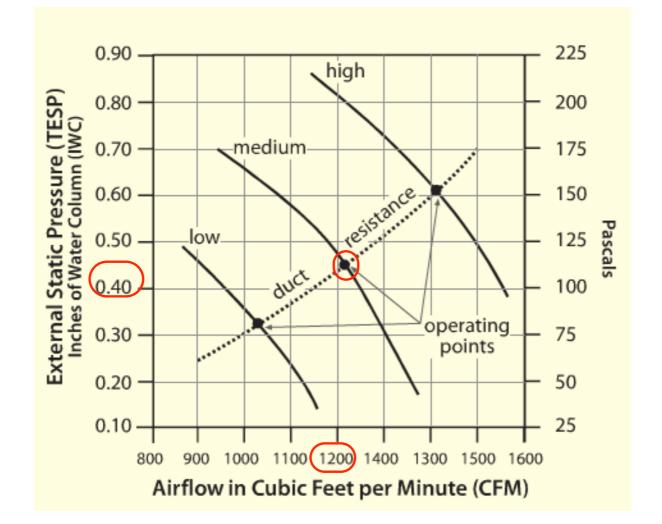
- Widely used for furnace blowers
- AC induction motor
- Runs at constant speed; 3-4 selections
- Limited airflow range
- Not very efficient (60-65%)
- Low cost
- Commodity replacement






Wrong fan speed - PSC


Wrong fan speed - PSC



Right fan speed - PSC

Right fan speed - PSC

Electronically-commutated Motor (ECM), Constant Airflow Aka "brushless permanent magnet (BPM)"

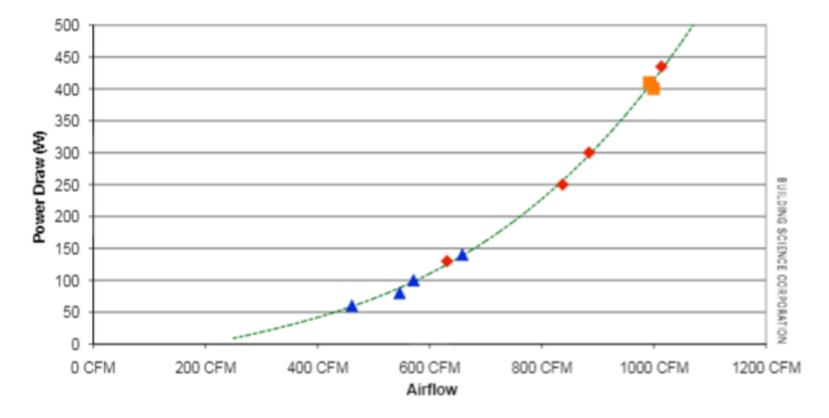
- Introduced in late 1980s for high-end, "variable-speed" furnaces
- DC motor
- Maintains constant airflow
- Wide airflow range
- More efficient
- Has start/stop ramping
- High cost
- Mfr specific

						ge Capacity = ge Capacity =			
	AIRFLOW SETTING	DIP SWITCH SETTING			EXTERNAL STATIC PRESSURE				
		SW7	SW8		0.1	0.3	0.5	0.7	0.9
HEATING 1ST STAGE	LOW	ON	ON	CFM TEMP.RISE WATTS	800 56 105	800 56 140	800 56 180	800 56 220	800 56 265
	MEDIUM LOW	OFF	ON	CFM TEMP.RISE WATTS	860 52 115	880 51 165	890 50 215	920 48 265	910 49 320
	NORMAL **	ON	OFF	CFM TEMP.RISE WATTS	960 46 150	990 45 200	1000 44 230	1020 44 310	1010 44 350
	HIGH	OFF	OFF	CFM TEMP.RISE WATTS	1080 41 195	1110 40 255	1120 40 315	1120 40 365	1080 41 390
HEATING 2ND STAGE	LOW	ON	ON	CFM TEMP.RISE WATTS	1100 62 205	1100 62 260	1120 61 320	1 120 61 370	1 090 63 400
	MEDIUM LOW	OFF	ON	CFM TEMP.RISE WATTS	1210 57 265	1240 55 340	1260 54 410	1260 54 470	1130 61 430
	NORMAL **	ON	OFF	CFM TEMP.RISE WATTS	1360 50 365	1390 49 445	1400 49 500	1360 50 535	1210 57 475
	HIGH	OFF	OFF	CFM TEMP.RISE WATTS	1360 50 355	1390 49 450	1400 49 520	1350 51 535	1 180 58 465

** Factory setting

Static Pressure effect on ECM

		EXTERN	AL STATIC PR	ESSURE	
	0.1	0.3	0.5	0.7	0.9
CFM	800	800	800	800	800
TEMP. RISE	56	56	56	56	56
WATTS	105	140	180	220	265
CFM	860	880	890	920	910
TEMP. RISE	52	51	50	48	49
WATTS	115	165	215	265	320
CFM	960	990	1000	1020	1010
TEMP. RISE	46	45	44	44	44
WATTS	150	200	230	310	350
CFM	1080	1110	1120	1120	1080
TEMP. RISE	41	40	40	40	41
WATTS	195	255	315	365	390


Static Pressure effect on ECM

		EXTERN	AL STATIC PF	ESSURE	
	0.1	0.3	0.5	0.7	0.9
CFM	800	800	800	800	800
TEMP. RISE	56	56	56	56	56
WATTS	105	140	180	220	265
CFM	860	880	890	920	910
TEMP. RISE	52	51	50	48	49
WATTS	115	165	215	265	320
CFM	960	990	1000	1020	1010
TEMP. RISE	46	45	44	44	44
WATTS	150	200	230	310	350
CFM	1080	1110	1120	1120	1080
TEMP. RISE	41	40	40	40	41
WATTS	195	255	315	365	390

Static Pressure effect on ECM

		EXTERN	AL STATIC PR	ESSURE	
	0.1	0.3	0.5	0.7	0.9
CFM	800	800	800	800	800
TEMP. RISE	56	56	56	56	56
WATTS	105	140	180	220	265
CFM TEMP. RISE WATTS	860 52 115	880 51 165	890 50 215	920 48 265	910 49 320
CFM TEMP. RISE WATTS	960 46 150	990 45 200	1000 44 230	1020 44 310	1010 44 350
CFM TEMP. RISE WATTS	1080 41 195	1110 40 255	1120 40 315	1120 40 365	1080 41 390

Power Draw versus Air Flow for Tested Air Handler

Slide credit: Building Science Corporation

CHECK HEAT-RISE - TO EVALUATE APPROPRIATENESS OF FAN SPEED.

	Sessous DIO FAR HAC					
OUTPUT See Note B SORTIE Voir La Note CI-		78,00	00		31.000	
AIR TEMPERATURE RISE AUGMENTATION DE LA	DEG. F	40-	70 5	0-80	35-85)
TEMPERATEUR DE L'AIR	DEG. C	22-	39 2	28-44	19-36	
DESIGN MAX. OUTLET AIR TEMPERATURE CONCU POUR UNE TEMPE	RATURE DEG. F	185	1	195	195	
MAX. D'AIR DE SORTIE DE	DEG. C	85	9	91	91	
(FOR PURPOSE OF INPL	JT ADJUSTMENT)	(POL	JR L'ADJU	STMENT	C'ENTREE)	-
ALTITUDE	MANIF	OLD PRE	SSURE/PI	RESSION T	UBULURE	-
0 - 4,500 FT.	IN. W.C. / P	0 C.E.	3.2-3.8	1.3-1	.8 0.50-0.6	5
0 – 1372 m	KPa	(0.80-0.95	0.32-0.42	0.125-0.162	
4,500 - 10,000 FT. 1372 - 3050 m		ERLESI		N MANUAL		
MAX. HEATING EXT. STATIC	PRESS.	1	0.5		0.125	
PRESS. STATIQUE EXT. MAX	L EN MODE DE CHAUFF	AGE	0.0		0.123	
MAX. INLET GAS PRESSURE PRESS. MAX D'ADMISSION			13.	.6	3.39	
MIN. INLET GAS PRESSURE PRESS. MIN D'ADMISSION I	DE GAZ		4.5	Service States	1.12	
For installation in alcove or closet at Min, clearance	INCHES DESSUS	SIDES	BACK	FRONT	VENT FRONT S EVENT SERVICE	DERAST
from combustible material (POUCES)	0	0	1 25		4
as shown here DOWNFLOW W/O COIL US DEBIT DESCENDANT SANS TYPE FSP CATEGORY IV D	E SUB - BASE S SERPENTIN, UTILIS DIRECT VENT FORCED	AIR FUI	RNACE.	K	GASB0201ALL	
TYPE FSP CATEGORIE IV.	a construction does not a construction of the second states of the second states of	a state and a state of the	and the second se		TE ET A AIR FOR	102
ENSEMBLE	Y AUTHORIZED GAS S DE CONVERSION	AU GA	Z AUTORI	ES PAR L'	USINE	
NATURAL GAS TO PROPANE	KGANP5	201VSP				
PROPANE TO NATURAL GAS	KGAPN4					
APPROVED FOR BUILDING CONS	TRUCTED ON SITE (BATIM	ENI CONS	INCO DUR PL	and .		
MOTE This Summer is attanted	d top office data and to \$750	-	asima in	ter to install d	ton indications for	Market 1

HEAT RISE/TEMP RISE BASICS

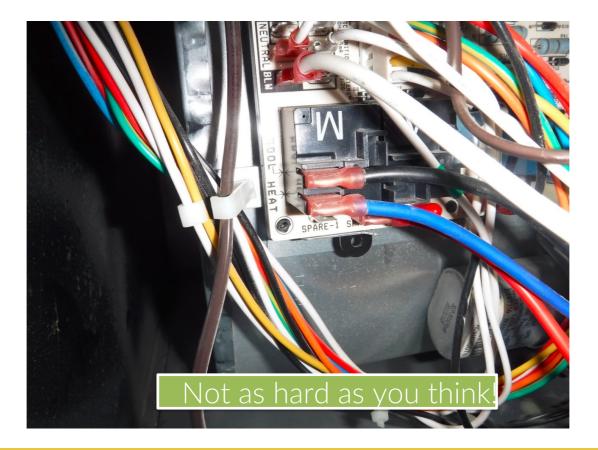
• The slower the airflow (thru the heat exchanger) the greater the heat rise.

HEAT RISE/TEMP RISE BASICS

- The slower the airflow (thru the heat exchanger) the greater the heat rise.
- The faster the airflow, the lower the heat rise.

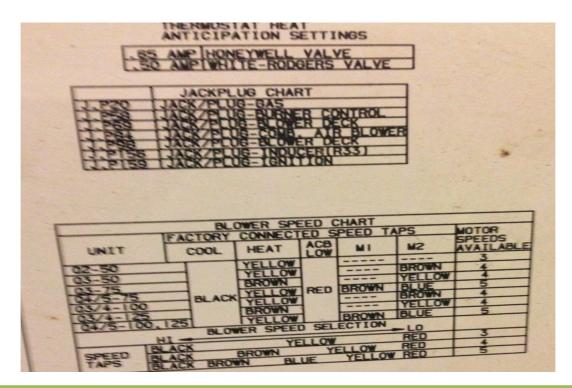
HEAT RISE/TEMP RISE BASICS

- The slower the airflow (thru the heat exchanger) the greater the heat rise.
- The faster the airflow, the lower the heat rise.
- Compare this heat-rise to Manufacture's spec on furnace.



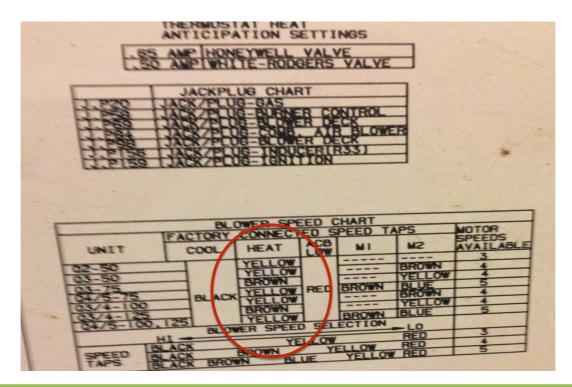
ADJUST FAN SPEEDS AS NEEDED

ADJUST FAN SPEEDS AS NEEDED

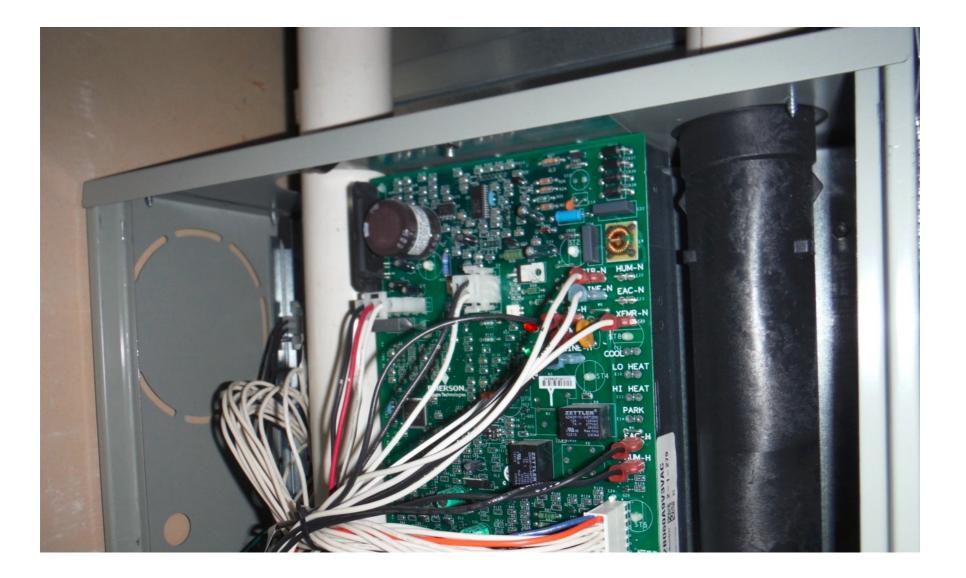


ADJUSTING FAN SPEEDS

1.55	ANTICIPA AMP HON	TION S	VAL	VE.	Ξ	
	JACKPL JACKZPLU JACKZPLU JACKZPLU JACKZPLU JACKZPLU		R G	NTROL CK BLOWE CK		
	JACK/PDU	WER SPE	EED C	HART		
	FACTORY	CONNECT	ED S	PEED T	PS	SPEEDS
UNIT	COOL	HEAT	ACB	MI	MZ	AVAILABLE
Here H	BLACK	PELLOW YELLOW YELLOW	RED	BROWN BROWN ECTION	BROWN YELLOW BLUE BROWN YELLOW BLUE LO RED RED	3 4 4 5 4 4 5 3 4
SPEED D	ACK ACK BRON	BROWN IN BL	UE	YELLOW		


ADJUSTING FAN SPEEDS

The furnace installation manual usually has a color chart to tell you which colors represents which speed.

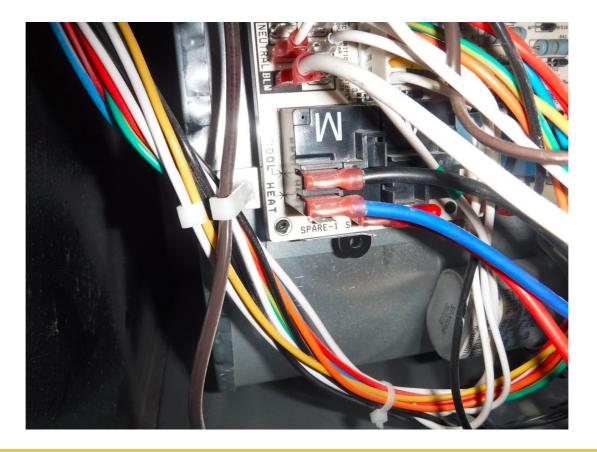


ADJUSTING FAN SPEEDS

The furnace installation manual usually has a color chart to tell you which colors represents which speed.

Some models are a little more complex, they have tiny dip switches that need to be adjusted according to the desired settings

RE-CHECK HEAT-RISE/TEMP-DROP



Exam	ple 1		Air Handler/ furna Rated Capacity Heat Rise 4" Merv 13 filte	100,000 e 40° er (4 mo	/ 82,000 - 70° onths old)		
			Ecobee thermostat	1/2	HP PSC motor		
1)	Take static pres	sure mea	surements - IWC or	Pasca	Is		
	Heat	mode me	ode		AC/	Circulation Mode	
a.	Before filter	-64	(Return system)	a.	Before filter	71	
b.	After filter	-176		b.	After filter	-188	
C.	Before coil	+62	_	C.	Before coil	+62	
d.	After blower	N/A	(Supply system)	d.	After blower	N/A	
e.	wattage	680	_	e.	wattage	840	
2)	Allowable Total	External S	Static Pressure - TES (IWC x 250			ers nameplate 125	
	Measured TESP	= Absol	ute value of [c] + [d]] .	(
	High TESP	pressures	s indicate many pos	sible pr	roblems - isola	ate where the restriction	s are:
3)	Ideal Return pre	essures =	20% of TES	25		25	
	Measured return	n pressure	e is = a	-64		71	
	-	s indicate ow fan sp		n syste	m, lower value	es may indicate duct lea	kage
			High	TE	SP		

 Ideal max filter pressure drop = 20% x TESP 	25	25
Pressure drop across Filter = [b] - [a]	112	117_
High value indicates problems such as: decreases airflow & cooling capa		o restrictive of filte
5) Ideal coil pressure drop = 40% of TESP	50	50
Pressure drop across coil = c - b	N/A	N/A
High values may indicate Dirty coil - insp & cooling capacity	pect if possible - de	creases airflow
6) Ideal supply duct pressure = 20% of TESP	25	25
Measured supply duct pressure = d.	62	62
High values indicate restrictions in supp indicate duct leakage or low fan s		values could
indicate duct leakage or low fan		values could
indicate duct leakage or low fan	speed)	values could
indicate duct leakage or low fan : 7) Dry bulb temperature from return hole	72.5	values could
7) Dry bulb temperature from return hole Dry bulb temp from supply hole	72.5 127°	values could
7) Dry bulb temperature from return hole Dry bulb temp from supply hole	72.5 127°	values could
7) Dry bulb temperature from return hole Dry bulb temp from supply hole	72.5 127° 54.5	values could

ADJUST FAN SPEED DOWN

2/8/17 - adjusted Air Handler/ furnace__NUGE100BG01_1/2 HP Rated Capacity__100,000 / 82,000____ Heat Rise 40° - 70° 4" Merv 13 filter (4 months old) Ecobee thermostat - _1/2 HP PSC motor

1) Take static pressure measurements - IWC or Pascals

	Heat	mode mode			AC/ C	rculation Mode	
a.	Before filter	62.5(R	eturn system)		Before filter		
b.	After filter	-165		b	After filter _	-165	
C.	Before coil	+56		C.	Before coil	+55	
d.	After blower	N/A(S	upply system)	d.	After blower_	N/A	
e.	wattage	550	3633. S S	e. w	attage	480	
	Measured TE\$P	221					
	High TESP	pressures indic	ate many possi	pie bio	Dicilia - 120101	where the restriction	is are
3)	High TESP			25	Diems - 190104	25	is are
3)		essures = 20% o	f TES				is are

 Ideal max filter pressure drop = 20% x TESP 	25	25
Pressure drop across Filter = [b] - [a]	-102.5	-102
High value indicates problems such as: C decreases airflow & cooling capac		restrictive of filt
5) Ideal coil pressure drop = 40% of TESP	50	50
Pressure drop across coil = c - b	N/A	N/A
b) Ideal supply duct pressure = 20% of TESP Measured supply duct pressure = d High values indicate restrictions in supply		25 55 alues could
indicate duct leakage or low fan s	peed)	
Dry bulb temp from supply hole	68° _126° 58°	
7) Dry bulb temperature from return hole Dry bulb temp from supply hole Heat rise =		
Dry bulb temp from supply hole	126° 58°	e, and

Total External Static Pressure

WHAT ELSE CAN INCREASE TESP?

Dirt - primarily in the filter &/or coil

April 11-14, 2022 | Nashville, TN

These 1" filters are often the culprit - they offer too much restriction when clean, and way too much restriction when dirty (which they often are).

A wider filter (4") has about four times the surface area as the 1" filter, and offers less restriction to the system.

The problem is they are expensive, so people don't want to change them as often as they ought to be changed.

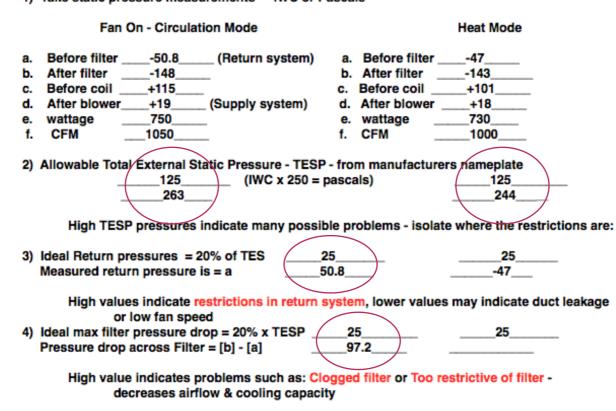
Filter	Depth	300 fpm	400 fpm	500 fpm	Ambient Particles	Particles After Filter	% Particle Drop
Precisionaire Easy Flow	1"	.10"	.12"	.14"			
True Blue Fiberglass	1"	.10"	.11"	.13"			
Filtrete 300	1"	.19"	.21"	.24"	1567000	1468000	6.32%
Filtrete 600	1"	.21"	.24"	.26"	1168000	943000	19.26%
Filtrete 1000	1"	.22"	.24"	.27"	740000	549000	25.81%
Filtrete 1250	1"	.22"	.24"	.27"	831000	716000	13.84%
Filtrete 1700	1"	.25"	.27"	.31"	767000	493000	35.72%
MERV 7	1"	.17"	.19"	.22"	940000	890000	5.32%
MERV 7	2"	.14"	.16"	.18"			
MERV 7	4"	.10"	.13"	.14"			
Carbon	2"	.14"	.16"	.18"	992000	948000	4.44%
MERV 11	1"	.26"	.28"	.31"	972000	865000	11.01%
MERV 11	2"	.20"	.23"	.25"	945000	821000	13.12%
MERV 12	2"	.23"	.24"	.26"	701000	452000	35.52%
Polyester	1"	.14"	.15"	.16"	1333000	1303000	2.25%
Polyester	2"	.30"	.33"	.37"	1322000	1303000	1.44%
Ring Panel	2"	.27"	.30"	.34"	1304000	1240000	4.91%
					1304000	135400	-3.83%
MERV 13	2"	.35"	.38"	.42"	168000	647000	39.42%
MERV 14	2"	.39"	.44"	.48"	1021000	508000	50.24%
MERV 14	4"	.29"	.36"	.40"	935000	455000	51.34%

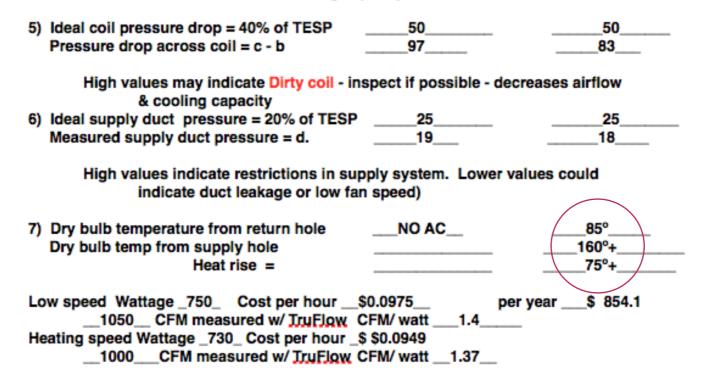
Filter	Depth	300 fpm	400 fpm	500 fpm	Ambient Particles	Particles After Filter	% Particle Drop
Precisionaire Easy Flow	1"	.10"	.12"	.14"			
True Blue Fiberglass	1"	.10"	.11"	.13"			
Filtrete 300	1"	.19"	.21"	.24"	1567000	1468000	6.32%
Filtrete 600	1"	.21"	.24"	.26"	1168000	943000	19.26%
Filtrete 1000	1"	.22"	.24"	.27"	740000	549000	25.81%
Filtrete 1250	1"	.22"	.24"	.27"	831000	716000	13.84%
Filtrete 1700	1"	.25"	.27"	.31"	767000	493000	35.72%
MERV 7	1"	.17"	.19"	.22"	940000	890000	5.32%
MERV 7	2"	.14"	.16"	.18"			
MERV 7	4"	.10"	.13"	.14"			
Carbon	2"	.14"	.16"	.18"	992000	948000	4.44%
MERV 11	1"	.26"	.28"	.31"	972000	865000	11.01%
MERV 11	2"	.20"	.23"	.25"	945000	821000	13.12%
MERV 12	2"	.23"	.24"	.26"	701000	452000	35.52%
Polyester	1"	.14"	.15"	.16"	1333000	1303000	2.25%
Polyester	2"	.30"	.33"	.37"	1322000	1303000	1.44%
Ring Panel	2"	.27"	.30"	.34"	1304000	1240000	4.91%
					1304000	135400	-3.83%
MERV 13	2"	.35"	.38"	.42"	168000	647000	39.42%
MERV 14	2"	.39"	.44"	.48"	1021000	508000	50.24%
MERV 14	4"	.29"	.36"	.40"	935000	455000	51.34%

Filter	Depth	300 fpm	400 fpm	500 fpm	Ambient Particles	Particles After Filter	% Particle Drop
Precisionaire Easy Flow	1"	.10"	.12"	.14"			
True Blue Fiberglass	1"	.10"	.11"	.13"			
Filtrete 300	1"	.19"	.21"	.24"	1567000	1468000	6.32%
Filtrete 600	1"	.21"	.24"	.26"	1168000	943000	19.26%
Filtrete 1000	1"	.22"	.24"	.27"	740000	549000	25.81%
Filtrete 1250	1"	.22"	.24"	.27"	831000	716000	13.84%
Filtrete 1700	1"	.25"	.27"	.31"	767000	493000	35.72%
MERV 7	1"	.17"	.19"	.22"	940000	890000	5.32%
MERV 7	2"	.14"	.16"	.18"			
MERV 7	4"	.10"	.13"	.14"			
Carbon	2"	.14"	.16"	.18"	992000	948000	4.44%
MERV 11	1"	.26"	.28"	.31"	972000	865000	11.01%
MERV 11	2"	.20"	.23"	.25"	945000	821000	13.12%
MERV 12	2"	.23"	.24"	.26"	701000	452000	35.52%
Polyester	1"	.14"	.15"	.16"	1333000	1303000	2.25%
Polyester	2"	.30"	.33"	.37"	1322000	1303000	1.44%
Ring Panel	2"	.27"	.30"	.34"	1304000	1240000	4.91%
					1304000	135400	-3.83%
MERV 13	2"	.35"	.38"	.42"	168000	647000	39.42%
MERV 14	2"	.39"	.44"	.48"	1021000	508000	50.24%
MERV 14	4"	.29"	.36"	.40"	935000	455000	51.34%

Filter	Depth	300 fpm	400 fpm	500 fpm	Ambient Particles	Particles After Filter	% Particle Drop
Precisionaire Easy Flow	1"	.10"	.12"	.14"			
True Blue Fiberglass	1"	.10"	.11"	.13"			
Filtrete 300	1"	.19"	.21"	.24"	1567000	1468000	6.32%
Filtrete 600	1"	.21"	.24"	.26"	1168000	943000	19.26%
Filtrete 1000	1"	.22"	.24"	.27"	740000	549000	25.81%
Filtrete 1250	1"	.22"	.24"	.27"	831000	716000	13.84%
Filtrete 1700	1"	.25"	.27"	.31"	767000	493000	35.72%
MERV 7	1"	11/	.19"	.22"	940000	890000	5.32%
MERV 7	2"	.14"	.16"	.18"			
MERV 7	4"	.10"	.13"	14			
Carbon	2"	.14"	.16"	.18"	992000	948000	4.44%
MERV 11	1"	.26"	.28"	.31"	972000	865000	11.01%
MERV 11	2"	.20"	.23"	.25"	945000	821000	13.12%
MERV 12	2"	.23"	.24"	.26"	701000	452000	35.52%
Polyester	1"	.14"	.15"	.16"	1333000	1303000	2.25%
Polyester	2"	.30"	.33"	.37"	1322000	1303000	1.44%
Ring Panel	2"	.27"	.30"	.34"	1304000	1240000	4.91%
					1304000	135400	-3.83%
MERV 13	2"	.35"	.38"	.42"	168000	647000	39.42%
MERV 14	2"	.39"	.44"	.48"	1021000	508000	50.24%
MERV 14	4"	.29"	.36"	.40"	935000	455000	51.34%

TOTAL EXTERNAL STATIC PRESSURE


- What else can increase TESP?
- **Restrictions** in the ductwork system (harder to fix)


Air Handler/ furnace__GMUH150-E5A__3/4 HP Rated Capacity_150,000 INPUT 120,000 Output_____ HEAT RISE - 50°-80° Filter - FPR -10 (MERV 12) 1" dirty 1) Take static pressure measurements - IWC or Pascals

Very High TESP

decreases airriow & cooling capacity

This fan speed is too low & should be adjusted up – furnace shut down on high limit But restrictions in the ductwork prevented proper airflow.

TOTAL EXTERNAL STATIC PRESSURE

- What else can increase TESP?
- **Restrictions** in the ductwork system (harder to fix)

Example 2 Post-retrofit

New ductwork & filters About \$500.00 (parts and labor)

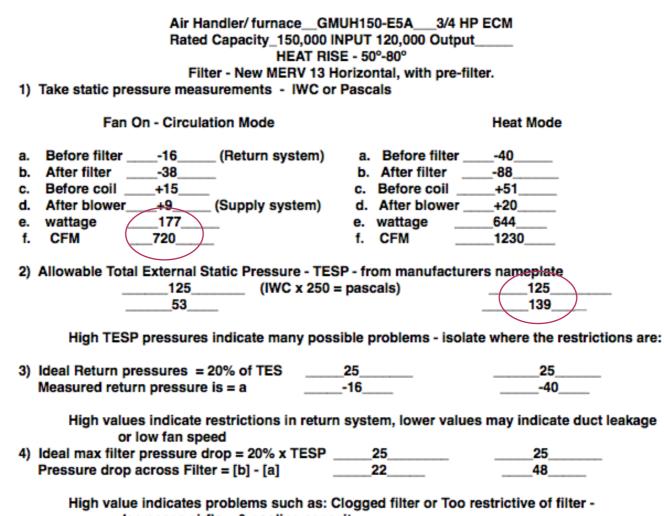
The new filter system - 4" Honeywell MERV 13 with a 1" fiberglass pre-filter

Much less restrictive than a clean 1" filter.

The pre-filter is there to catch the largest "boulders", and should be changed monthly.

This enables the larger filter to last 6 months or longer

After Improving air flow, we are able to change out the inefficient permanent split capacitor motor (PSC) with a replacement ECM (Constant Torque). The drop in wattage (same airflow) is often very significant.


This model also allows us to set up a very low continuous movement of air for filtration, ~400 - 700 CFM, @120 - 180 Watts of power.

Example 2

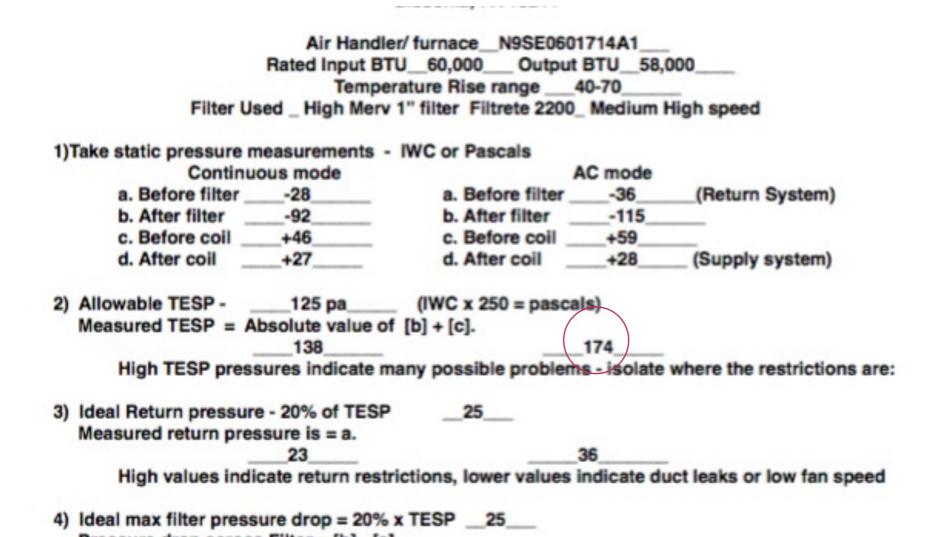
New ECM motor installan additional \$500.00 parts and labor Labour.

12 0 12 0 12 0. 12 0.

decreases airflow & cooling capacity

Example 2 - post retrofit - TESP nearly cut in half

Example 2 - post retrofit

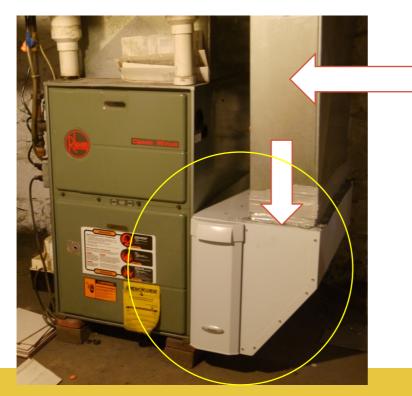

Ideal coil pressure drop = 40% of TESP	50	50
Pressure drop across coil = c - b	6	31
High values may indicate Dirty coil - ins & cooling capacity		ecreases airflow
6) Ideal supply duct pressure = 20% of TESP	25	25
Measured supply duct pressure = d.	9	20
indicate duct leakage or low fan 7) Dry bulb temperature from return hole	speed) NO AC	71°
Dry bulb temp from supply hole		147°
Dry bulb temp from supply hole Heat rise =		147°

24/7 Filtration for less than \$200 a year (instead of \$854.00 pre-retrofit)

Example 3

Ideal coil pressure drop = 40% of TESP 50 Pressure drop across coil = c - d 25 31 High values may indicate Dirty coil - inspect if possible Ideal supply duct pressure = 20% of TESP 25 Measured supply duct pressure = d. 21 28 High values indicate restrictions in supply system. Lower values could indicate duct leakage or low fan speed) Cooling speed Wattage 590 Cost per hour \$.0755 Cost per year 661.65 Cost per hour \$.0665 Cost per year \$583.07 Circulation speed Wattage 520 Cooling Measured / calculated CFM _____1110 ____ method ___ Static pressure charts

ADHESIVE REMOVER



Replaced PSC motor with ECM

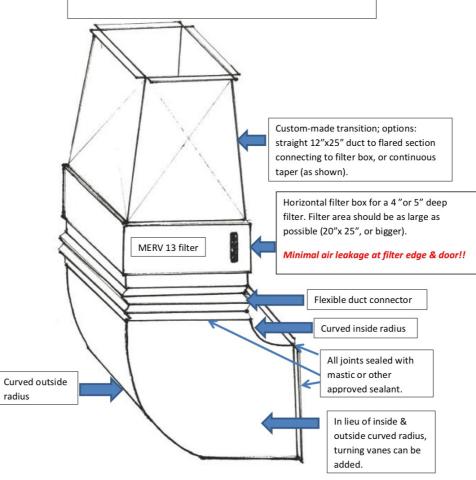
LESSONS LEARNED: AN EARLY CHANGE-OUT

In search of an easy fix.... Don't do this!!!

Not Effective!

- 1) Return drop restricted due to size (8" x 25")
- 2) Poor design at throat w hard 90 degree angle

3) Filter still only 16" x 25"


Too much airflow (system oversized) for this return drop

Basement Return Drop Modification

1) a larger & deeper MERV 13 filter; 2) more even flow/loading over the full filter; and 3) lower static pressure across both the filter & return side of the ductwork.

Example 3

90 degree transition designed for better air flow; lower static (with turning vanes)

Fan speed adjusted to optimize heating, cooling, & continuous performance.

RESULTS:

5 yr. old home Significant comfort improvement!

About \$1000 investment

RESULTS:

5 yr. old home Significant comfort improvement!

About \$1000 investment

In continuous mode: ➤ 3.38 CFM/watt ➤ TESP Pre: 138, Post: 52

RESULTS:

5 yr. old home Significant comfort improvement!

About \$1000 investment

In continuous mode:

➤ 3.38 CFM/watt
➤ TESP Pre: 138, Post: 52
➤ 360 Watts (reduction)

RESULTS: 5 yr. old home Significant comfort improvement!

About \$1000 investment

In continuous mode:

➤ 3.38 CFM/watt
➤ TESP Pre: 138, Post: 52
➤ 360 Watts (reduction)
➤ \$142/ yr. elec. use (\$583.00 Pre)

RESULTS: 5 yr. old home Significant comfort improvement!

About \$1000 investment

In continuous mode:

- ► 3.38 CFM/watt
- ► TESP Pre: 138, Post: 52
- ► 360 Watts (reduction)
- >\$142/ yr. elec. use (\$583.00 Pre)
- ≻\$441/yr savings

Example : Air Handler Retrofit 2.0

Larger return drop

2-part filter rack (20" x 25") Horizontal (4" MERV 13 + 2" pre or post filter)

> 90 degree transition designed for better air flow (heel & throat); lower static

RESULTS:

In continuous mode:

- ► 4.27 CFM/watt
- ➤ 120 Watts
- Pressure drop across filter Pre: 93 Pa, Post: 16 Pa
- Allowable TESP:125 Pa (total system)

ECM replacement

Fan speed adjusted to optimize heating, cooling, & continuous performance.

New Furnace

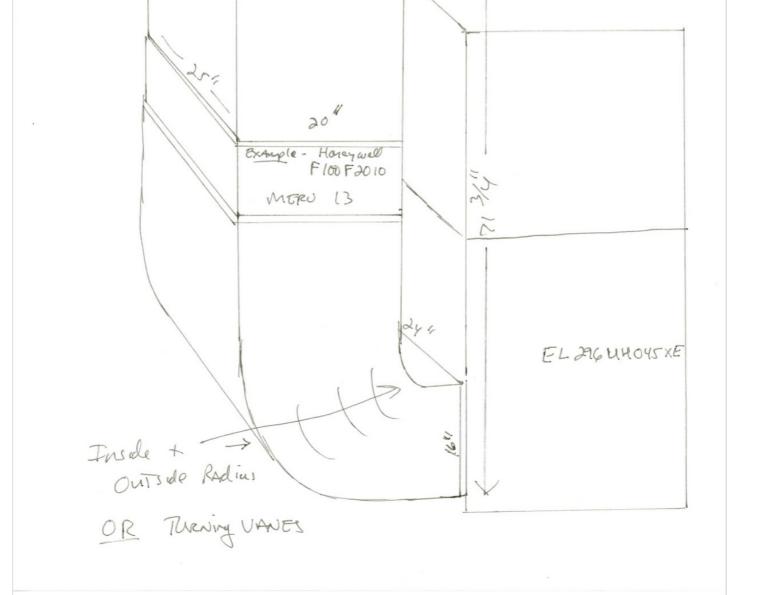
New Furnace

Adding AC

Downsize Furnace

Downsize Furnace

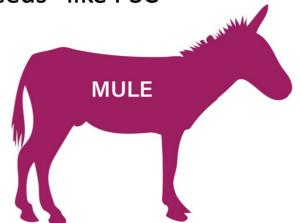
Change Return Drop & Filter



1) Static pressures: AC speed a. Before filter61 b. After filter160_ c. Before coil+66_ d. After coil+38_ e. Wattage340_ f. CFM 1300		-50Before filter115After filter57.5Before coil7After coil23wattage	r61_ Before 160_ After f +66 Befor +38 After c 340 wattag	
3) Allowable TESP - from manufa	cturers nameplat	e 125		
Measured TESP _2	•		1	75
High TESP pressures indic	cate many possib	le problems - isol	ate where the res	strictions are:
4) Ideal Return pressure - 20% of		25 i661_		
Measured return pressure6	615	661_		52
High values indicate return	n restrictions, lov	ver values indicate	duct leaks or lo	w fan speed
5) Ideal max filter pressure drop =	= 20% x TESP	25		
Pressure drop across Filter _			6	5
. –				
High value indicates probl	ems: Clogged or	restrictive of filter	- decreases airf	low capacity
6) Ideal coil pressure drop = 40%		50 5	06	
Pressure drop across coil _2	819.		26_	
High values may indicate	Dirty coil - inspe	ct if possible		
	•	•		

1) Static pressures: AC speed a. Before filter61 b. After filter160_ c. Before coil+66_ d. After coil+38_ e. Wattage340_ f. CFM 1300	H <u>Example 4</u> Before inter50 After filter115 Before coil _+57.5 After coil +37 wattage _223 CFM 925	Fan only speed Before filter61_ After filter160_ Before coil+66 After coil+38 wattage340 CFM 1300	After filter117_ Before coil _58 After coil32
3) Allowable TESP - from manufa	cturers nameplate	125	
Measured TESP _2	-		175
High TESP pressures indic	cate many possible pr	oblems - isolate where	e the restrictions are:
4) Ideal Patura areas		05	
4) Ideal Return pressure - 20% or Measure Creturn pressure6		-25 -61	-52
High values indicate return	n restrictions, lower v	alues indicate duct lea	iks or low fan speed
		_	
5) Ideal max filter pressure drop = Pressure drop across Filter		25 99	65
Pressure drop across Filter _3		99	05
High value indicates probl	ems: Clogged or rest	rictive of filter - decrea	ses airflow capacity
6) Ideal coil pressure drop = 40%		50	
Pressure drop across coil _2	819.5	28	26
High values may indicate	Dirty coil - inspect if	possible	
· · · · · · · · · · · · · · · · · · ·			

1) Static pressures: AC speed a. Before filter61 b. After filter160_ c. Before coil+66_ d. After coil+38_ e. Wattage340_ f. CFM 1300	CFM	30 115 _+57.5 +37 _223 925	Fan only s Before filte After filter Before coi After coil wattage CFM	er61_ 160_	Before coi	er -52_ 117_
3) Allowable TESP - from manufa	cturers name	plate _	_125			
Measured TESP _2	26	_172.5	226	<u> </u>	175	_
High TESP pressures indi	cate many pos	ssible pro	blems - iso	late where	e the restrict	ions are:
		-				
4) Ideal Return pressure - 20% or	TESP	-	25			
Measure return pressure		-56	-61		-52	
High values indicate return	n restrictions	lower va	lues indicat	e duct lea	ks or low fai	n speed
	,					
5) Ideal max filter pressure drop =	= 20% x TESP	25	5			
Pressure drop across Filter					65	
Pressure drop across Filter _		_59	99		65	
	99	_59	99	r - decrea		
Pressure drop across Filter _	99	_59	99	r - decrea		apacity
High value indicates probl 6) Ideal coil pressure drop = 40%	ems: Clogged of TESP	_59 1 or <mark>restri</mark>	99_ ctive of filte 0	r - decrea	ses airflow o	apacity
High value indicates probl	ems: Clogged of TESP	_59 d or <mark>restri</mark>	99	r - decrea		apacity
High value indicates probl 6) Ideal coil pressure drop = 40% Pressure drop across coil _2	99 ems: Clogged of TESP 28	_59 d or restric 50 _19.5	99_ ctive of filte 0 28	r - decrea	ses airflow o	apacity
High value indicates probl 6) Ideal coil pressure drop = 40%	99 ems: Clogged of TESP 28	_59 d or restric 50 _19.5	99_ ctive of filte 0 28	r - decrea	ses airflow o	capacity


Constant Torque ECM

Electronically-commutated Motor (ECM) Constant Torque

Original trade name "X13"

- Introduced around 2006
- ECM efficiency
- Maintains constant torque (not airflow)
- Limited to discrete "speeds" like PSC
- Has start/stop ramping
- Middle cost
- Can be retrofit

High TESP pressures indicate many pe	ossible problem	s - isolate where	the restrictions are:
4) Ideal Return pressure - 20% of TESP	25		
Measured return pressure16	21	25	16
High values indicate return restrictions	s, lower values i	indicate duct leak	s or low fan speed
E) Ideal may filter pressure drap - 20% y TES	D 25		
5) Ideal max filter pressure drop = 20% x TES	P25 22	27	16
Pressure drop across Filter16		2/	16
High value indicates problems: Clogge	ed or restrictive	of filter - decreas	es airflow capacity
			co union capacity
6) Ideal coil pressure drop = 40% of TESP	50		
Pressure drop across coilNA			
High values may indicate <u>Dirty coil - i</u>	inspect if possit	<u>ole</u>	
Ideal supply duct pressure = 20% of TESP	25	_	
Measured supply duct pressure+20	_+25	+33	+19
High values indicate restrictions in su	pply system.		
8) Dry bulb temperature from return hole		68	68
Dry bulb temp from supply hole		104	98
Heat rise =		42°	30°
AC speed Wattage _260 Cost per hour \$0		•	
770 CFM measured w/ TruFlow		6	
Low fire Wattage _352 Cost per hour _\$0.03		_	
870 CFM measured w/ TruFlow		7	
Hi -Heating Wattage _495_ Cost per hour _\$0.			
1080CFM measured w/ TruFlow	CFM/ watt2.	18	

High TESP pressures indicate many po	ssible problems	- isolate where	the restrictions are:
Ideal Return pressure - 20% of TESP	25		
asured return pressure16	21	25	16
High values indicate return restrictions	, lower values in	dicate duct leal	ts or low fan speed
Ideal max filter pressure drop = 20% x TESP	25		
Pressure drop across Filter16	_22	27	16
High value indicates problems: Clogge	d or restrictive o	of filter - decreas	es airflow capacity
Ideal coil pressure drop = 40% of TESP	50		
Pressure drop across coilNA			
High values may indicate <u>Dirty coil - in</u>	nspect if possibl	e	
	25		
Measured supply duct pressure+20	_+25	+33	+19
• •	ply system.		
• •			68
Dry bulb temp from supply hole			98
Heat rise =		42°	30°
• • • • •			
770 CFM measured w/ TruFlow C	FM/ watt2.96		
w fire Wattage _352 Cost per hour _\$0.038	B		
870 CFM measured w/ TruFlow C	FM/ watt2.47		
-Heating Wattage _495_ Cost per hour _\$0.0	54		
1080 CEM measured w/ TruElow C	FM/ watt 2.1	8	
	High TESP pressures indicate many pool Ideal Return pressure - 20% of TESP asured return pressure16	High TESP pressures indicate many possible problems Ideal Return pressure - 20% of TESP 25	High TESP pressures indicate many possible problems - isolate where Ideal Return pressure - 20% of TESP

High values indicate return restrictions, lower values indicate duct leaks or low fan speed

 High value indicates problems: Clogged or restrictive of filter - decreases airflow capacity 6) Ideal coil pressure drop = 40% of TESP50
Pressure drop across coil NA High values may indicate Dirty coil - inspect if possible 7) Ideal supply duct pressure = 20% of TESP 25 Measured supply duct pressure _+20+25+33+19
7) Ideal supply duct pressure = 20% of TESP25 Measured supply duct pressure+20+25+33+19
Measured supply duct pressure+20+25+33+19
High values indicate restrictions in supply system
8) Dry bulb temperature from return hole 6868 Dry bulb temp from supply hole 010498 Heat rise = 020300
AC speed Wattage _260 Cost per hour \$0.0286 770 CFM measured w/ TruFlow CFM/ watt2.96 Low fire Wattage _352_ Cost per hour _\$0.038_ 870 CFM measured w/ TruFlow CFM/ watt2.47 Hi -Heating Wattage _495_ Cost per hour _\$0.054 1080CFM measured w/ TruFlow CFM/ watt2.18 Constant speed Wattage _260_ Cost per hour \$0.0286 Cost per Year 24/7/365 _\$250.54 Cost at 30 min/hr \$125.26

Brand new Carrier system

INITIALLY:

- 1" filter & return drop too restrictive
- Airflows not adjusted properly
- TESP too high in Stages 2 & 3, & AC

INTERVENTION:

- Carrier tech adjusted airflows
- ROCIS installed new return drop w larger deeper MERV 13 Aprilaire filter

POST:

- Fan only: 42 watts, 317 CFM, TESP 49 Pa
- Stage 2 & AC: 193 watts, 670 CFM; TESP 94 Pa
- Stage 3: 310 watts, 720 CFM, TESP 114 PA

FAN ONLY PERFORMANCE:

7.54 CFM/Watt 24/7 operation: \$53/year

TESP System Limit: 125 Pa

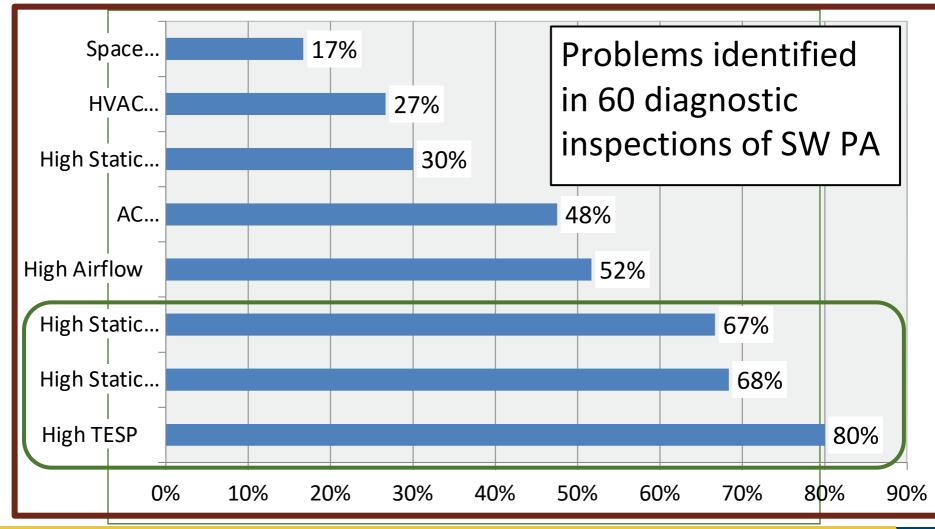
Rhett Major The Energy Doctor www.energydoc.info TheEnergyDoctor@Comcast.net

BIG ISSUES WITH 24/7 HIGH MERV FILTER

Air handler (AHU) energy use can be high due to 500 to 1,500 watt-draw

 High cost of running air handler continuously (360 kWh to 1080 kWh/month = ~\$500 to \$1500/year¹)

Wrong blower speed

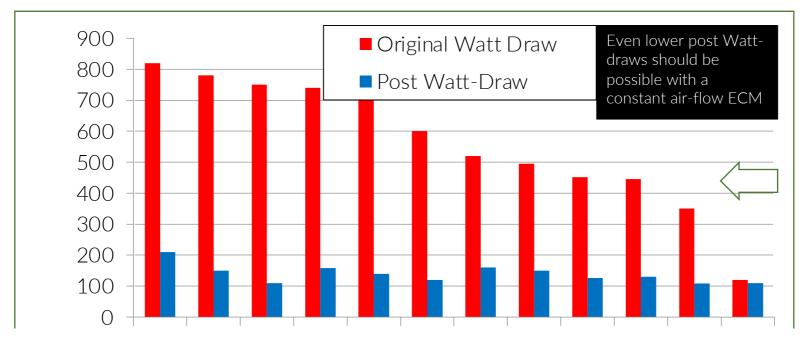

- Seldom set in field
- Often defaults to high speed, not low, in continuous mode
- Higher energy cost, less effective filtration

Ductwork issues introduce additional problems

- Static pressure too high (can lead to equipment failure)
- Duct leaks (energy waste & pressure-related problems)

¹ \$0.12/kWh

ROCIS 24/7 Air Handler Checklist


Air Handler Inquiry | ROCIS.org

Guidance is specific to our typical residential basement HVAC systems

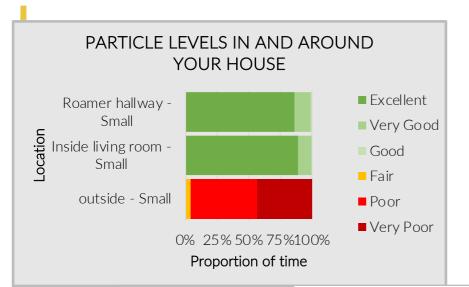
Air Handler Interventions

Pre-Post Continuous Watt-Draw

-

FILTER ESSENTIALS

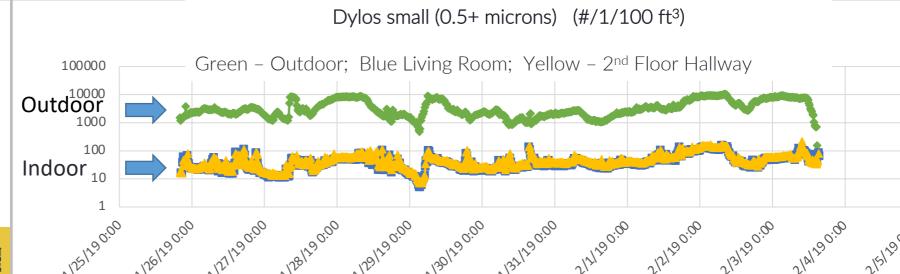
Deep filter (we prefer 4") Large filter (surface area) Low resistance filter (check label on filter) Minimize filter bypasses


MERV 13 to reduce 0.3 to 0.5 μm particles (MERV is like R-Value; performance depends on installation/operation)

Adequate run/on time (if system passes diagnostic screening)

Performance Tested Comfort Systems (PTCS)

Great program in the Pacific NW that addresses system sizing, air flow, & static pressure: https://ptcs.bpa.gov/



LCMP Top Performer Air Handler 24/7 – MERV 13 Filter

Indoor tracks outdoor Indoor uniform -2 locations Also -2^{nd} floor portable air cleaner

Continuous Mode: **\$12/month Post: 110 watts; 500 CFM** Pre-Post: 400 watt reduction

Filter Bypass: Relatively Common in Homes

Photo credit: Brent Stephens

Even small leaks (bypasses) can make a big difference

One change – we now use manufactured filter boxes for a better seal around the filter

4 CHALLENGES

1) No option for AHU upgrade

- 2) How to determine optimal fan run-time
- 3) Don't miss the boat at point of replacement
- 4) Clarify the value proposition

FAN/FILTER INTERVENTION: LOW COST, MERV 13

4" MERV 13 filter (\$35) on 20" x 20" box fan (~\$20)

Box fan in room or in window

UL-rated fan with overheat protection

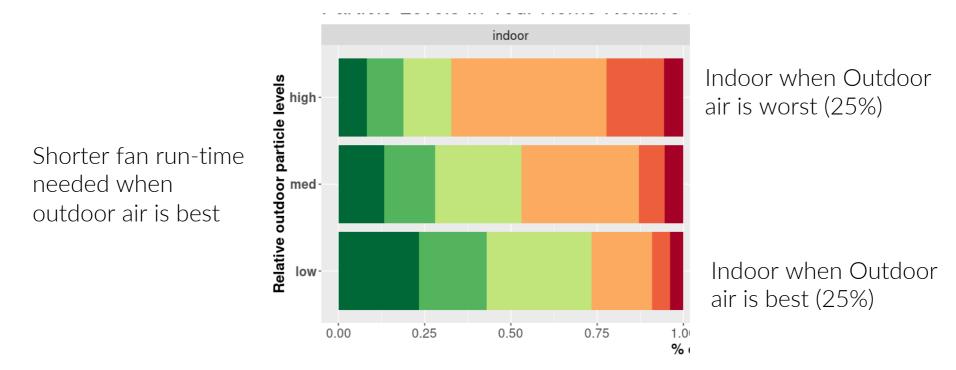
FAN/FILTER OPTIONS 20" BOX FAN W HIGH MERV FILTERS

Use multiple filters for better air flow (2 in V, or 4 in box)

Known as the Corsi-Rosenthal Cube

https://m.box.com/shared_item/https%3A%2F%2Fucdavis.box.com%2Fs%2Fkgo937lkOd02g0k2bxvpxxqbfatd7czu

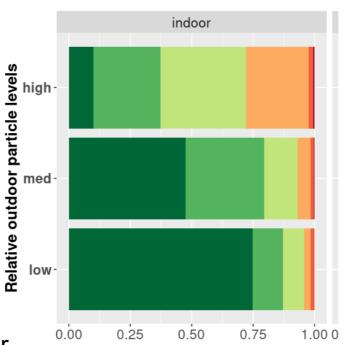
Image Credit: Comparetto Comfort Solutions



4 CHALLENGES

- 1) No option for AHU upgrade
- 2) How to determine optimal fan run-time
- 3) Don't miss the boat at point of replacement
- 4) Clarify the value proposition

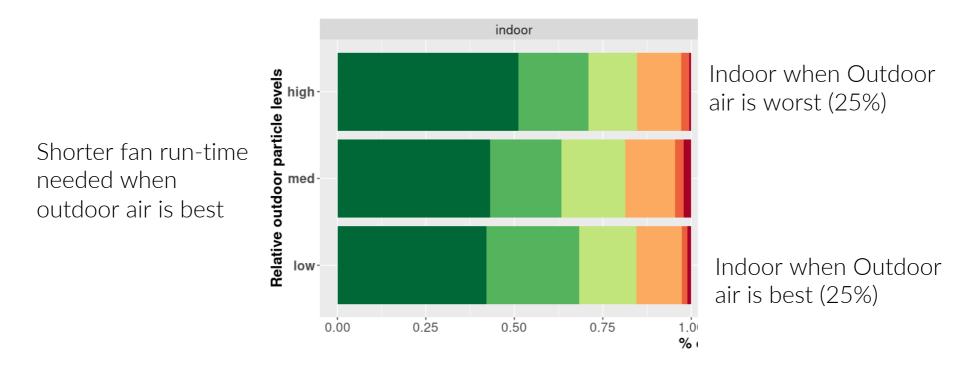
PARTICLE LEVELS INSIDE RELATIVE TO OUTSIDE


ROCIS LMCP Data Explorer http://rocis.org/rocis-data-explorer

PARTICLE LEVELS INSIDE RELATIVE TO OUTSIDE

Shorter fan run-time needed when outdoor air is best

ROCIS LMCP Data Explorer http://rocis.org/rocis-data-explorer



Indoor when Outdoor air is worst (25%)

Indoor when Outdoor air is best (25%)

PARTICLE LEVELS INSIDE RELATIVE TO OUTSIDE (24/7 AHU OPERATION)

ROCIS LMCP Data Explorer http://rocis.org/rocis-data-explorer

4 CHALLENGES

- 1) No option for AHU upgrade
- 2) How to determine optimal fan run-time
- 3) Don't miss the boat at point of replacement
- 4) Clarify the value proposition

BIG OPPORTUNITY AT HVAC SYSTEM REPLACEMENT

Downsize HVAC to reduce static pressure!!

Incorporate return drop modification & option for larger, deeper filter Set blower speeds for optimal performance

Address duct system shortcomings

To ponder...

• How can potential filtration health & comfort benefits add impetus to getting HVAC systems designed & installed correctly?

4 CHALLENGES

- 1) No option for AHU upgrade
- 2) How to determine optimal fan run-time
- 3) Don't miss the boat at point of replacement
- 4) Clarify the value proposition

QUESTIONS / COMMENTS?

Rhett Major, Principal The Energy Doctor 1739 Guffey Road, North Huntingdon, PA <u>theenergydoctor@comcast.net</u>

Linda Wigington, Team Leader ROCIS, Reducing Outdoor Contaminants in Indoor Spaces Waynesburg, PA Iwigington1@outlook.com

www.ROCIS.org

National Home Performance Conference & Trade Show | 2022